Legs evolved only at the end!

Talking about legged locomotion often evokes the idea that animals using such devices are perfectly adapted to this kind of motion and should be copied by robotics. The aim of this contribution is to show that the evolution of legs comes late in phylogeny, be it in arthropods or vertebrates. Neural control of legs in vertebrates has to deal with conservative arrangements ‘invented’ for axial locomotion of metameric organisms. The structure of this paper is to show the importance of axial driven propulsion in vertebrates without legs, with legs and only at the end how limbs move the body in eutherian mammals.

[1]  A. Thurston,et al.  Normal Kinematics of the Lumbar Spine and Pelvis , 1983, Spine.

[2]  Auke Jan Ijspeert,et al.  A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander , 2001, Biological Cybernetics.

[3]  R Jacobs,et al.  The control of mono‐articular muscles in multijoint leg extensions in man. , 1995, The Journal of physiology.

[4]  M. Koizumi,et al.  On the morphology of the brachial plexus of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus) , 1997, Journal of anatomy.

[5]  I W Hunter,et al.  Human ankle joint stiffness over the full range of muscle activation levels. , 1988, Journal of biomechanics.

[6]  G. E. Goslow,et al.  Electrical activity and relative length changes of dog limb muscles as a function of speed and gait. , 1981, The Journal of experimental biology.

[7]  S. Gould,et al.  The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  Manfred Hiller,et al.  Transfer of biological principles into the construction of quadruped walking machines , 2001, Proceedings of the Second International Workshop on Robot Motion and Control. RoMoCo'01 (IEEE Cat. No.01EX535).

[9]  S Grillner,et al.  Simulations of neuromuscular control in lamprey swimming. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  H. Witte,et al.  A calculation of the forces acting on the human acetabulum during walking. Based On in vivo force measurements, kinematic analysis and morphometry. , 1997, Acta anatomica.

[11]  Reinhard Blickhan Axial aquatic and pedal terrestrial locomotion.-Form, structure, and movement. , 1993 .

[12]  Hartmut Witte,et al.  Biomimetic robotics should be based on functional morphology , 2004, Journal of anatomy.

[13]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[14]  Hartmut Witte,et al.  Evolution of Vertebrate Locomotory Systems , 2004 .

[15]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[16]  N. Fowkes,et al.  Modification patterns in germinating barley--malting II. , 2005, Journal of theoretical biology.

[17]  Ronald F. Zernicke,et al.  Modulation of limb dynamics in the swing phase of locomotion , 1985 .

[18]  S. Gould The Structure of Evolutionary Theory , 2002 .

[19]  R. Blickhan,et al.  The tri-segmented limbs of therian mammals: kinematics, dynamics, and self-stabilization--a review. , 2006, Journal of experimental zoology. Part A, Comparative experimental biology.

[20]  Reinhard Blickhan,et al.  Stable operation of an elastic three-segment leg , 2001, Biological Cybernetics.

[21]  W. Weber,et al.  Mechanik der menschlichen Gehwerkzeuge , 1894 .

[22]  Time-Life Books,et al.  WALKING AND RUNNING. , 1885, Science.

[23]  R. Quinn,et al.  Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. , 2004, Arthropod structure & development.

[24]  C Tardieu,et al.  New method of three-dimensional analysis of bipedal locomotion for the study of displacements of the body and body-parts centers of mass in man and non-human primates: evolutionary framework. , 1993, American journal of physical anthropology.

[25]  H. Preuschoft,et al.  Human body proportions explained on the basis of biomechanical principles. , 1991, Zeitschrift fur Morphologie und Anthropologie.

[26]  M. Fischer Crouched posture and high fulcrum, a principle in the locomotion of small mammals: The example of the rock hyrax (Procavia capensis) (Mammalia: Hyracoidea) , 1994 .

[27]  Nouvelle méthode d'analyse tridimensionnelle de la marche bipède pour l'étude des déplacements des centres de gravité du corps et de ses différentes parties chez l'homme et les primates non humains. Problématique évolutive , 1990 .

[28]  Martin S. Fischer,et al.  Mechanical self-stabilization, a working hypothesis for the study of the evolution of body proportions in terrestrial mammals? , 2006 .

[29]  R Jacobs,et al.  Function of mono- and biarticular muscles in running. , 1993, Medicine and science in sports and exercise.

[30]  M. Fischer,et al.  Interactions between Motions of the Trunk and the Angle of Attack of the Forelimbs in Synchronous Gaits of the Pika (Ochotona rufescens) , 2006 .

[31]  Interprétation biomécanique des trois modèles bipèdes: homme, enfant, chimpanzé, à la lumière des résultats obtenus par une nouvelle méthode d'analyse tridimensionnelle de la marche [1]. Implications évolutives , 1990 .

[32]  Alexander N. Kuznetsov,et al.  Energetical profit of the third segment in parasagittal legs , 1995 .

[33]  Hartmut Geyer,et al.  Swing-leg retraction: a simple control model for stable running , 2003, Journal of Experimental Biology.

[34]  Michael Günther,et al.  Intelligence by mechanics , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  M. Fischer,et al.  Torque patterns of the limbs of small therian mammals during locomotion on flat ground. , 2002, The Journal of experimental biology.

[36]  T. McMahon,et al.  Ballistic walking: an improved model , 1980 .

[37]  G. E. Goslow,et al.  The functional anatomy of the shoulder of the savannah monitor lizard (Varanus exanthematicus) , 1983, Journal of morphology.

[38]  D. Bramble,et al.  Functional vertebrate morphology , 1985 .

[39]  R. Blickhan,et al.  Similarity in multilegged locomotion: Bouncing like a monopode , 1993, Journal of Comparative Physiology A.

[40]  G. Cavagna,et al.  Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. , 1977, The American journal of physiology.

[41]  Adolf Seilacher,et al.  ARBEITSKONZEPT ZUR KONSTRUKTIONS‐MORPHOLOGIE , 1970 .

[42]  T. McMahon,et al.  Ballistic walking. , 1980, Journal of biomechanics.

[43]  S. Grillner Locomotion in vertebrates: central mechanisms and reflex interaction. , 1975, Physiological reviews.

[44]  W. Weber,et al.  Mechanik der menschlichen Gehwerkzeuge. : eine anatomisch-physiologische Untersuchung , 1836 .

[45]  R. Blickhan,et al.  Spring-mass running: simple approximate solution and application to gait stability. , 2005, Journal of theoretical biology.

[46]  M. Fischer,et al.  Basic limb kinematics of small therian mammals. , 2002, The Journal of experimental biology.

[47]  Masayoshi Kubo,et al.  Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking , 2004, Biological Cybernetics.