Wilson Bases for General Time-Frequency Lattices

Motivated by a recent generalization of the Balian--Low theorem and by new research in wireless communications, we analyze the construction of Wilson bases for general time-frequency lattices. We show that orthonormal Wilson bases for $L^2(\mathbb{R})$ can be constructed for any time-frequency lattice whose volume is $\frac12$. We then focus on the spaces $\ell^2(\mathbb{Z})$ and $\mathbb{C}^L$ which are the preferred settings for numerical and practical purposes. We demonstrate that with a properly adapted definition of Wilson bases the construction of orthonormal Wilson bases for general time-frequency lattices also holds true in these discrete settings. In our analysis we make use of certain metaplectic transforms. Finally, we discuss some practical consequences of our theoretical findings.

[1]  I. Daubechies,et al.  A simple Wilson orthonormal basis with exponential decay , 1991 .

[2]  D. Walnut,et al.  Differentiation and the Balian-Low Theorem , 1994 .

[3]  C. Hermite Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. , 1850 .

[4]  Karlheinz Gröchenig,et al.  Aspects of Gabor analysis on locally compact abelian groups , 1998 .

[5]  Kai Bittner,et al.  Wilson Bases on the Interval , 2003 .

[6]  Myoung An,et al.  Time-frequency representations , 1997, Applied and numerical harmonic analysis.

[7]  G. Folland A course in abstract harmonic analysis , 1995 .

[8]  A. Janssen From continuous to discrete Weyl-Heisenberg frames through sampling , 1997 .

[9]  T. Strohmer Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications , 2000, math/0010244.

[10]  B. Floch,et al.  Coded orthogonal frequency division multiplex , 1995 .

[11]  Thomas Strohmer,et al.  Optimal OFDM design for time-frequency dispersive channels , 2003, IEEE Trans. Commun..

[12]  Thomas Strohmer,et al.  Numerical algorithms for discrete Gabor expansions , 1998 .

[13]  Thomas Strohmer,et al.  Methods for Approximation of the Inverse (Gabor) Frame Operator , 2003 .

[14]  E. Hewitt,et al.  Abstract Harmonic Analysis , 1963 .

[15]  Louis Auslander,et al.  On finite Gabor expansion of signals , 1990 .

[16]  Loo Keng Hua,et al.  Introduction to number theory , 1982 .

[17]  Gitta Kutyniok,et al.  Zeros of the Zak transform on locally compact abelian groups , 1998 .

[18]  Andreas F. Molisch,et al.  Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels , 1998, IEEE J. Sel. Areas Commun..

[19]  Helmut Bölcskei,et al.  Oversampled modulated filter banks , 1998 .

[20]  Deguang Han,et al.  The Balian–Low theorem for symplectic lattices in higher dimensions , 2002 .

[21]  H. Feichtinger,et al.  Quantization of TF lattice-invariant operators on elementary LCA groups , 1998 .

[22]  F. Hlawatsch,et al.  Discrete-time Wilson expansions , 1996, Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96).

[23]  E. Brown,et al.  Generalized Wannier Functions and Effective Hamiltonians , 1968 .

[24]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[25]  John J. Benedetto,et al.  The Balian–Low theorem for the symplectic form on R2d , 2003 .

[26]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[27]  A. Blokhuis SPHERE PACKINGS, LATTICES AND GROUPS (Grundlehren der mathematischen Wissenschaften 290) , 1989 .

[28]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[29]  Helmut Bölcskei,et al.  Orthogonal Frequency Division Multiplexing Based on Offset QAM , 2003 .

[30]  G. Folland Harmonic analysis in phase space , 1989 .

[31]  Norbert Kaiblinger,et al.  Approximation of the Fourier Transform and the Dual Gabor Window , 2005 .

[32]  O. Christensen,et al.  Group theoretical approach to Gabor analysis , 1995 .