Probing the Delicate Balance between Pauli Repulsion and London Dispersion with Triphenylmethyl Derivatives.

The long-known, ubiquitously present, and always attractive London dispersion (LD) interaction was probed with hexaphenylethane (HPE) derivatives. A series of all- meta hydrocarbyl [Me, iPr, tBu, Cy, Ph, 1-adamantyl (Ad)]-substituted triphenylmethyl (TPM) derivatives [TPM-H, TPM-OH, (TPM-O)2, TPM•] was synthesized en route, and several derivatives were characterized by single-crystal X-ray diffraction (SC-XRD). Multiple dimeric head-to-head SC-XRD structures feature an excellent geometric fit between the meta-substituents; this is particularly true for the sterically most demanding tBu and Ad substituents. NMR spectra of the iPr-, tBu-, and Cy-derived trityl radicals were obtained and reveal, together with EPR and UV-Vis spectroscopic data, that the effects of all- meta alkyl substitution on the electronic properties of the trityl scaffold are marginal. Therefore, we concluded that the most important factor for HPE stability arises from LD interactions. Beyond all- meta tBu-HPE we also identified the hitherto unreported all- meta Ad-HPE. An intricate mathematical analysis of the temperature-dependent dissociation constants allowed us to extract Δ Gd298(exptl) = 0.3(5) kcal mol-1 from NMR experiments for all- meta tBu-HPE, in good agreement with previous experimental values and B3LYP-D3(BJ)/def2-TZVPP(C-PCM) computations. These computations show a stabilizing trend with substituent size in line with all- meta Ad-HPE (Δ Gd298(exptl) = 2.1(6) kcal mol-1) being more stable than its tBu congener. That is, large, rigid, and symmetric hydrocarbon moieties act as excellent dispersion energy donors. Provided a good geometric fit, they are able to stabilize labile molecules such as HPE via strong intramolecular LD interactions, even in solution.

[1]  J. Mague,et al.  An Exceptionally Close, Non-Bonded Hydrogen-Hydrogen Contact with Strong Through-Space Spin-Spin Coupling. , 2018, Angewandte Chemie.

[2]  C. Corminboeuf,et al.  How do London Dispersion Interactions Impact the Photochemical Processes of Molecular Switches? , 2018, The journal of physical chemistry letters.

[3]  D. Lambrecht,et al.  Ligand-Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins. , 2017, Journal of the American Chemical Society.

[4]  Stefan Grimme,et al.  Intramolecular London Dispersion Interaction Effects on Gas-Phase and Solid-State Structures of Diamondoid Dimers. , 2017, Journal of the American Chemical Society.

[5]  M. Suhm,et al.  Tipping the Scales: Spectroscopic Tools for Intermolecular Energy Balances. , 2017, The journal of physical chemistry letters.

[6]  Peter Chen,et al.  Attenuation of London Dispersion in Dichloromethane Solutions. , 2017, Journal of the American Chemical Society.

[7]  P. Schreiner,et al.  London Dispersion Enables the Shortest Intermolecular Hydrocarbon H···H Contact. , 2017, Journal of the American Chemical Society.

[8]  R. Mata,et al.  Manganese(I)-Catalyzed Dispersion-Enabled C-H/C-C Activation. , 2017, Chemistry.

[9]  C. Corminboeuf,et al.  Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions. , 2017, The Journal of chemical physics.

[10]  Obiamaka Obianyo,et al.  Substituted Diarylnorbornadienes and Quadricyclanes: Synthesis, Photochemical Properties, and Effect of Substituent on the Kinetic Stability of Quadricyclanes. , 2017, The Journal of organic chemistry.

[11]  Frank Neese,et al.  Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A Domain-Based Local Pair Natural Orbital Coupled Cluster Study. , 2017, Chemistry.

[12]  P. Power,et al.  London dispersion forces in sterically crowded inorganic and organometallic molecules , 2017 .

[13]  S. Nagase,et al.  Dispersion Forces, Disproportionation, and Stable High-Valent Late Transition Metal Alkyls. , 2016, Angewandte Chemie.

[14]  J. Fettinger,et al.  Dispersion-Force-Assisted Disproportionation: A Stable Two-Coordinate Copper(II) Complex. , 2016, Angewandte Chemie.

[15]  D. Rogers,et al.  Can Dispersion Forces Govern Aromatic Stacking in an Organic Solvent? , 2016, Angewandte Chemie.

[16]  P. Schreiner,et al.  London Dispersion Decisively Contributes to the Thermodynamic Stability of Bulky NHC-Coordinated Main Group Compounds. , 2016, Journal of chemical theory and computation.

[17]  Frank Neese,et al.  Sparse maps--A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. , 2016, The Journal of chemical physics.

[18]  Hermann A. Wegner,,et al.  Anziehung oder Abstoßung? London‐Dispersionswechselwirkungen kontrollieren Azobenzol‐basierte molekulare Schalter , 2015 .

[19]  H. Wegner,et al.  Attraction or Repulsion? London Dispersion Forces Control Azobenzene Switches. , 2015, Angewandte Chemie.

[20]  P. Schreiner,et al.  London dispersion in molecular chemistry--reconsidering steric effects. , 2015, Angewandte Chemie.

[21]  A. Hinz,et al.  Synthesis and structure of tritylium salts , 2015, Structural Chemistry.

[22]  S. Nagase,et al.  Dispersion Force Effects on the Dissociation of “Jack-in-the-Box” Diphosphanes and Diarsanes , 2015 .

[23]  K. Koszinowski,et al.  Catalyst activation, deactivation, and degradation in palladium-mediated Negishi cross-coupling reactions. , 2015, Chemistry.

[24]  C. Rogers,et al.  Time-Resolved Fluorescence Anisotropy of Bicyclo[1.1.1]pentane/Tolane-Based Molecular Rods Included in Tris(o-phenylenedioxy)cyclotriphosphazene (TPP) , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[25]  I. Sanhueza,et al.  Dispersion Makes the Difference: Bisligated Transition States Found for the Oxidative Addition of Pd(PtBu3)2 to Ar-OSO2R and Dispersion-Controlled Chemoselectivity in Reactions with Pd[P(iPr)(tBu2)]2 , 2015 .

[26]  Gabriel Cuevas,et al.  Assessment of hydrophobic interactions and their contributions through the analysis of the methane dimer , 2015, J. Comput. Chem..

[27]  P. Stange,et al.  Controlling the subtle energy balance in protic ionic liquids: dispersion forces compete with hydrogen bonds. , 2015, Angewandte Chemie.

[28]  S. Cockroft,et al.  Partitioning solvophobic and dispersion forces in alkyl and perfluoroalkyl cohesion. , 2015, Angewandte Chemie.

[29]  Jun Zhang,et al.  Dispersion interaction stabilizes sterically hindered double fullerenes. , 2014, Chemistry.

[30]  H. Schneider,et al.  Neues zum hydrophoben Effekt – Studien mit supramolekularen Komplexen zeigen hochenergetisches Wasser als nichtkovalente Bindungstriebkraft , 2014 .

[31]  Haiyan Ma,et al.  Ethylene-bridged C1-symmetric ansa-(3-R-indenyl)(fluorenyl) zirconocene complexes for propylene dimerization or polymerization: The effect of R group , 2014 .

[32]  C. Pace,et al.  Forces stabilizing proteins , 2014, FEBS letters.

[33]  M. Organ,et al.  On the remarkably different role of salt in the cross-coupling of arylzincs from that seen with alkylzincs. , 2014, Angewandte Chemie.

[34]  P. Schreiner,et al.  Synthesis of substituted adamantylzinc reagents using a Mg-insertion in the presence of ZnCl₂ and further functionalizations. , 2014, Organic letters.

[35]  K. Shimizu Intermolecular forces: a solution to dispersion interactions. , 2013, Nature chemistry.

[36]  Scott L Cockroft,et al.  How much do van der Waals dispersion forces contribute to molecular recognition in solution? , 2013, Nature chemistry.

[37]  Stefan Grimme,et al.  Dispersion-driven conformational isomerism in σ-bonded dimers of larger acenes. , 2013, Angewandte Chemie.

[38]  Frank Neese,et al.  Natural triple excitations in local coupled cluster calculations with pair natural orbitals. , 2013, The Journal of chemical physics.

[39]  S. Grimme,et al.  Effects of London dispersion correction in density functional theory on the structures of organic molecules in the gas phase. , 2013, Physical chemistry chemical physics : PCCP.

[40]  J. Mague,et al.  Exceptional steric congestion in an in,in-bis(hydrosilane). , 2013, Journal of the American Chemical Society.

[41]  A. Alexakis,et al.  Asymmetric bromine-lithium exchange: application toward the synthesis of natural product. , 2013, Organic letters.

[42]  M. García‐Melchor,et al.  Computational perspective on Pd-catalyzed C-C cross-coupling reaction mechanisms. , 2013, Accounts of chemical research.

[43]  J. Fettinger,et al.  Dispersion forces and counterintuitive steric effects in main group molecules: heavier group 14 (Si-Pb) dichalcogenolate carbene analogues with sub-90° interligand bond angles. , 2013, Journal of the American Chemical Society.

[44]  Frank Neese,et al.  An efficient and near linear scaling pair natural orbital based local coupled cluster method. , 2013, The Journal of chemical physics.

[45]  B. Kirchner,et al.  The bulk and the gas phase of 1-ethyl-3-methylimidazolium ethylsulfate: dispersion interaction makes the difference. , 2012, Physical chemistry chemical physics : PCCP.

[46]  A. A. Fokin,et al.  Stable alkanes containing very long carbon-carbon bonds. , 2012, Journal of the American Chemical Society.

[47]  Luís M. N. B. F. Santos,et al.  Experimental support for the role of dispersion forces in aromatic interactions. , 2012, Chemistry.

[48]  J. Clyburne,et al.  Higher-order zincates as transmetalators in alkyl-alkyl negishi cross-coupling. , 2012, Angewandte Chemie.

[49]  A. Seitsonen,et al.  Effect of dispersion on the structure and dynamics of the ionic liquid 1-ethyl-3-methylimidazolium thiocyanate. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[50]  T. Müller,et al.  Dispersion Energy Enforced Dimerization of a Cyclic Disilylated Plumbylene , 2012, Journal of the American Chemical Society.

[51]  P. Schreiner,et al.  Steric crowding can stabilize a labile molecule: solving the hexaphenylethane riddle. , 2011, Angewandte Chemie.

[52]  Per-Ola Norrby,et al.  Dispersion and back-donation gives tetracoordinate [Pd(PPh3)4]. , 2011, Angewandte Chemie.

[53]  A. A. Fokin,et al.  Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces , 2011, Nature.

[54]  M. Kolář,et al.  On the role of London dispersion forces in biomolecular structure determination. , 2011, The journal of physical chemistry. B.

[55]  S. Grimme,et al.  On the importance of the dispersion energy for the thermodynamic stability of molecules. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  M. Garcia‐Garibay,et al.  Synthesis and Solid-State Rotational Dynamics of Molecular Gyroscopes with a Robust and Low Density Structure Built with a Phenylene Rotator and a Tri(meta-terphenyl)methyl Stator , 2011 .

[57]  Cory Valente,et al.  Differentiating C-Br and C-Cl bond activation by using solvent polarity: applications to orthogonal alkyl-alkyl Negishi reactions. , 2011, Angewandte Chemie.

[58]  R. Jana,et al.  Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. , 2011, Chemical reviews.

[59]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[60]  S. Grimme,et al.  Cation-cation "attraction": when London dispersion attraction wins over Coulomb repulsion. , 2011, Inorganic chemistry.

[61]  M. García‐Melchor,et al.  Palladium round trip in the Negishi coupling of trans-[PdMeCl(PMePh2)2] with ZnMeCl: an experimental and DFT study of the transmetalation step. , 2010, Chemistry.

[62]  P. Uvdal,et al.  Temperature-controlled kinetics of the growth and relaxation of alcohol clusters in an argon matrix , 2010 .

[63]  Osamu Takahashi,et al.  Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates: evidence from recent experimental data and high-level ab initio MO calculations. , 2010, Chemical reviews.

[64]  Cory Valente,et al.  On the role of additives in alkyl-alkyl Negishi cross-couplings. , 2010, Chemical communications.

[65]  H. Takemura,et al.  The intramolecular C–F⋯HO hydrogen bond of 2-fluorophenyldiphenylmethanol , 2009 .

[66]  S. Grimme,et al.  Noncovalent metal-metal interactions: the crucial role of london dispersion in a bimetallic indenyl system. , 2009, Journal of the American Chemical Society.

[67]  H. Schneider Binding mechanisms in supramolecular complexes. , 2009, Angewandte Chemie.

[68]  B. Kirchner,et al.  Validation of dispersion-corrected density functional theory approaches for ionic liquid systems. , 2008, The journal of physical chemistry. A.

[69]  A. A. Fokin,et al.  Diamonds are a chemist's best friend: diamondoid chemistry beyond adamantane. , 2008, Angewandte Chemie.

[70]  J. Vondrášek,et al.  Dispersion interactions govern the strong thermal stability of a protein. , 2007, Chemistry.

[71]  J. Hartwig Electronic effects on reductive elimination to form carbon-carbon and carbon-heteroatom bonds from palladium(II) complexes. , 2007, Inorganic chemistry.

[72]  G. Salas,et al.  Insights into the mechanism of the Negishi reaction: ZnRX versus ZnR2 reagents. , 2007, Journal of the American Chemical Society.

[73]  X. Creary Super radical stabilizers. , 2006, Accounts of chemical research.

[74]  C. Carre,et al.  Syntheses of Sterically Hindered Pyridinium Phenoxides as Model Compounds in Nonlinear Optics , 2006 .

[75]  J. E. Rogers,et al.  Synthesis, crystal structure, and nonlinear optical behavior of beta-unsubstituted meso-meso E-vinylene-linked porphyrin dimers. , 2005, Organic letters.

[76]  S. Buchwald,et al.  Catalysts for Suzuki-Miyaura coupling processes: scope and studies of the effect of ligand structure. , 2005, Journal of the American Chemical Society.

[77]  K. Houk,et al.  Crankshaft motion in a highly congested bis(triarylmethyl)peroxide. , 2004, Journal of the American Chemical Society.

[78]  O. Brede,et al.  Free electron transfer mirrors rotational conformers of substituted aromatics: Reaction of benzyltrimethylsilanes with n-butyl chloride parent radical cations , 2004 .

[79]  I. Guzei,et al.  Synthesis and isolation of polytrityl cations by utilizing hexaphenylbenzene and tetraphenylmethane scaffolds. , 2004, The Journal of organic chemistry.

[80]  K. Müllen,et al.  Supramolecular staircase via self-assembly of disklike molecules at the solid-liquid interface. , 2001, Journal of the American Chemical Society.

[81]  D. Xenides,et al.  Dipole, dipole–quadrupole, and dipole–octopole polarizability of adamantane, C10H16, from refractive index measurements, depolarized collision-induced light scattering, conventional ab initio and density functional theory calculations , 2001 .

[82]  Chick C. Wilson,et al.  Unravelling the disordered hydrogen bonding arrangement in solid triphenylmethanol , 1999 .

[83]  W. Nau,et al.  Electronic Effects of para- and meta-Substituents on the EPR D Parameter in 1,3-Arylcyclopentane-1,3-diyl Triplet Diradicals. A New Spectroscopic Measure of α Spin Densities and Radical Stabilization Energies in Benzyl-Type Monoradicals , 1997 .

[84]  I. Ekhato,et al.  Model reactions targeted at the synthesis of carbon-14 labeled CI-996, a potent antagonist of angiotensin II receptor (1) , 1994 .

[85]  C. Amatore,et al.  Evidence of the formation of zerovalent palladium from Pd(OAc)2 and triphenylphosphine , 1992 .

[86]  B. Matthews,et al.  Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. , 1992, Science.

[87]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[88]  M. Prewitt,et al.  Meta-substituent effects on benzyl free-radical stability , 1990 .

[89]  B. M. Powell,et al.  Structure of the α-phase of solid methanol , 1989 .

[90]  A. Fersht,et al.  Contribution of hydrophobic interactions to protein stability , 1988, Nature.

[91]  Stephen R. Wilson,et al.  Iodination of aryltrimethylsilanes. A mild approach to (iodophenyl)alanine , 1986 .

[92]  B. Kahr,et al.  Length of the ethane bond in hexaphenylethane and its derivatives , 1986 .

[93]  W. Neumann,et al.  Sterically hindered free radicals. 14. Substituent-dependent stabilization of para-substituted triphenylmethyl radicals , 1986 .

[94]  A. Nicholas,et al.  Substituent effects on benzyl radical hydrogen hyperfine coupling constants (hfc's).: Part 5. The comparison of electron spin resonance hfc's and the stabilization energy of π-radicals due to spin delocalization , 1986 .

[95]  Alan R. Fersht,et al.  The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus) , 1984, Cell.

[96]  G. Molle,et al.  High-yield direct synthesis of a new class of tertiary organolithium derivatives of polycyclic hydrocarbons , 1983 .

[97]  G. Molle,et al.  Formation of cage-structure organomagnesium compounds. Influence of the degree of adsorption of the transient species at the metal surface , 1982 .

[98]  M. Lyttle,et al.  Unusual equilibrium between 1,4- and 1,6-di-tert-butylcyclooctatetraenes , 1981 .

[99]  H. Sugiyama,et al.  Electron spin resonance studies on tris(3,5-di-tert-butylphenyl)silyl and germyl radicals , 1980 .

[100]  A. Rieker,et al.  Hexakis(2,6‐di‐tert‐butyl‐4‐biphenylyl)ethane—The First Unbridged Hexaarylethane , 1978 .

[101]  G. Molle,et al.  Organometallic Compounds with Cage Structures: 1-Adamantyl Lithium , 1978 .

[102]  J. McBride,et al.  o- and p-Semibenzene dimers of benzylic radicals. Autoxidation of quinoid dimers , 1974 .

[103]  A. Berndt,et al.  Spin density distribution and stereochemistry of triphenylmethyl radical in solution , 1973 .

[104]  B. Nilsson Barriers to internal rotation in 1,3,5-trineopentylbenzenes , 1972 .

[105]  E. Grunwald,et al.  Acid dissociation in acetone-water mixtures. An anomalous medium effect when London dispersion forces are large , 1969 .

[106]  K. Pitzer,et al.  Electronic Correlation in Molecules. III. The Paraffin Hydrocarbons1 , 1956 .

[107]  K. Pitzer London Force Contributions to Bond Energies , 1955 .

[108]  L. C. Anderson The Absorption Spectra of Free Radicals , 1935 .

[109]  D. Seebach,et al.  Experimental and Theoretical Conformational Analysis of 5‐Benzylimidazolidin‐4‐one Derivatives – a ‘Playground’ for Studying Dispersion Interactions and a ‘Windshield‐Wiper’ Effect in Organocatalysis , 2010 .

[110]  R. A. Jackson,et al.  EPR spectra of 3,5-disubstituted benzyl radicals , 1992 .

[111]  J. Kamimura,et al.  Hydrogenolysis of Diaryl and Aryl Alkyl Ketones and Carbinols by Sodium Borohydride and Anhydrous Aluminum(III) Chloride , 1987 .

[112]  A. Mclachlan Effect of the medium on dispersion forces in liquids , 1965 .

[113]  L. Hammett The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives , 1937 .

[114]  F. London,et al.  The general theory of molecular forces , 1937 .

[115]  P. Jacobson Zur «Triphenylmethyl»‐Frage , 1905 .