Resolving the discrepancy in tortuosity factor estimation for Li-Ion battery electrodes through micro-macro modeling and experiment

Battery performance is strongly correlated with electrode microstructural properties. Of the relevant properties, the tortuosity factor of the electrolyte transport paths through microstructure pores is important as it limits battery maximum charge/discharge rate, particularly for energy-dense thick electrodes. Tortuosity factor however, is difficult to precisely measure, and thus its estimation has been debated frequently in the literature. Herein, three independent approaches have been applied to quantify the tortuosity factor of lithium-ion battery electrodes. The first approach is a microstructure model based on three-dimensional geometries from X-ray computed tomography (CT) and stochastic reconstructions enhanced with computationally generated carbon/binder domain (CBD), as CT is often unable to resolve the CBD. The second approach uses a macro-homogeneous model to fit electrochemical data at several rates, providing a separate estimation of the tortuosity factor. The third approach experimentally measures tortuosity factor via symmetric cells employing a blocking electrolyte. Comparisons have been made across the three approaches for 14 graphite and nickel-manganese-cobalt oxide electrodes. Analysis suggests that if the tortuosity factor were characterized based on the active material skeleton only, the actual tortuosities would be 1.35–1.81 times higher for calendered electrodes. Correlations are provided for varying porosity, CBD phase interfacial arrangement and solid particle morphology.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  Marco Stampanoni,et al.  Determining the uncertainty in microstructural parameters extracted from tomographic data , 2018 .

[3]  K. Smith,et al.  Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes. , 2018, ACS applied materials & interfaces.

[4]  M. Ebner,et al.  Tortuosity of Battery Electrodes: Validation of Impedance-Derived Values and Critical Comparison with 3D Tomography , 2018 .

[5]  Jeff Dahn,et al.  Quantifying inhomogeneity of lithium ion battery electrodes and its influence on electrochemical performance , 2018 .

[6]  Fangming Jiang,et al.  Effect of microstructure morphology on Li-ion battery graphite anode performance: Electrochemical impedance spectroscopy modeling and analysis , 2018 .

[7]  James Francfort,et al.  Enabling fast charging – Battery thermal considerations , 2017 .

[8]  Richard Barney Carlson,et al.  Enabling fast charging - Infrastructure and economic considerations , 2017 .

[9]  Richard Barney Carlson,et al.  Enabling fast charging – A battery technology gap assessment , 2017 .

[10]  Richard Barney Carlson,et al.  Enabling fast charging – Vehicle considerations , 2017 .

[11]  Oluwadamilola O. Taiwo,et al.  Investigation of cycling-induced microstructural degradation in silicon-based electrodes in lithium-ion batteries using X-ray nanotomography , 2017 .

[12]  D. Finegan,et al.  Simulated impedance of diffusion in porous media , 2017 .

[13]  Francois L. E. Usseglio-Viretta,et al.  Quantitative Microstructure Characterization of a NMC Electrode , 2017 .

[14]  P. Pietsch,et al.  X-Ray Tomography for Lithium Ion Battery Research: A Practical Guide , 2017 .

[15]  P. Mukherjee,et al.  Mechanistic Understanding of the Role of Evaporation in Electrode Processing , 2017 .

[16]  N. R. Backeberg,et al.  Laser‐preparation of geometrically optimised samples for X‐ray nano‐CT , 2017, Journal of microscopy.

[17]  P. Mukherjee,et al.  Evaporation induced nanoparticle - binder interaction in electrode film formation. , 2017, Physical chemistry chemical physics : PCCP.

[18]  Thierry Douillard,et al.  Multiscale Morphological and Electrical Characterization of Charge Transport Limitations to the Power Performance of Positive Electrode Blends for Lithium‐Ion Batteries , 2017 .

[19]  J. Urai,et al.  Microstructure formation of lithium-ion battery electrodes during drying – An ex-situ study using cryogenic broad ion beam slope-cutting and scanning electron microscopy (Cryo-BIB-SEM) , 2017 .

[20]  K. Smith,et al.  Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD , 2017 .

[21]  D. Abraham,et al.  Galvanostatic Intermittent Titration and Performance Based Analysis of LiNi0.5Co0.2Mn0.3O2 Cathode , 2017 .

[22]  V. Battaglia,et al.  Comparing Macroscale and Microscale Simulations of Porous Battery Electrodes , 2017 .

[23]  A. Latz,et al.  Thick electrodes for Li-ion batteries: A model based analysis , 2016 .

[24]  Oluwadamilola O. Taiwo,et al.  Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy , 2016 .

[25]  V. Wood,et al.  Improving Ionic Conductivity and Lithium-Ion Transference Number in Lithium-Ion Battery Separators. , 2016, ACS applied materials & interfaces.

[26]  Nigel P. Brandon,et al.  TauFactor: An open-source application for calculating tortuosity factors from tomographic data , 2016, SoftwareX.

[27]  Florian Bouville,et al.  Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries , 2016, Nature Energy.

[28]  Arnulf Latz,et al.  Influence of local lithium metal deposition in 3D microstructures on local and global behavior of Lithium-ion batteries , 2016 .

[29]  Paul R. Shearing,et al.  On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems , 2016 .

[30]  P. Mukherjee,et al.  Transport-Geometry Interactions in Li-Ion Cathode Materials Imaged Using X-ray Nanotomography , 2016 .

[31]  Tian Li,et al.  Graphene Oxide‐Based Electrode Inks for 3D‐Printed Lithium‐Ion Batteries , 2016, Advanced materials.

[32]  R. E. García,et al.  Microstructural effects on the average properties in porous battery electrodes , 2016 .

[33]  Ali Ghorbani Kashkooli,et al.  Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography , 2016 .

[34]  Hubert A. Gasteiger,et al.  Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy , 2016 .

[35]  Peter Beike,et al.  Intermolecular And Surface Forces , 2016 .

[36]  Oluwadamilola O. Taiwo,et al.  In-situ examination of microstructural changes within a lithium-ion battery electrode using synchrotron x-ray microtomography , 2015 .

[37]  Wei Kong,et al.  A Simple Expression for the Tortuosity of Gas Transport Paths in Solid Oxide Fuel Cells’ Porous Electrodes , 2015 .

[38]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[39]  Nigel P. Brandon,et al.  Multi Length-Scale Quantification of Hierarchical Microstructure in Designed Microtubular SOFC Electrodes , 2015 .

[40]  D. Wheeler,et al.  Three‐Phase Multiscale Modeling of a LiCoO2 Cathode: Combining the Advantages of FIB–SEM Imaging and X‐Ray Tomography , 2015 .

[41]  K. Schladitz,et al.  Multiscale simulation process and application to additives in porous composite battery electrodes , 2015 .

[42]  Horst Hahn,et al.  Thick Electrodes for High Energy Lithium Ion Batteries , 2015 .

[43]  V. Battaglia,et al.  Mesoscale elucidation of the influence of mixing sequence in electrode processing. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[44]  Moses Ender,et al.  Anode microstructures from high-energy and high-power lithium-ion cylindrical cells obtained by X-ray nano-tomography , 2014 .

[45]  P. Mukherjee,et al.  Microstructure Evolution in Lithium-Ion Battery Electrode Processing , 2014 .

[46]  D. Wheeler,et al.  A Combination of X‐Ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO2 Li‐Ion Battery Cathodes , 2014 .

[47]  Martin Ebner,et al.  Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes , 2014 .

[48]  Joaquim R. R. A. Martins,et al.  A Surrogate-Based Multi-Scale Model for Mass Transport and Electrochemical Kinetics in Lithium-Ion Battery Electrodes , 2014 .

[49]  Andreas Wiegmann,et al.  Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes , 2013 .

[50]  Martin Ebner,et al.  Validity of the Bruggeman relation for porous electrodes , 2013 .

[51]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[52]  M. Sahimi,et al.  Tortuosity in Porous Media: A Critical Review , 2013 .

[53]  F. Marone,et al.  X‐Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes , 2013 .

[54]  R. Wepf,et al.  Three‐dimensional pore structure and ion conductivity of porous ceramic diaphragms , 2013 .

[55]  D Jeulin,et al.  Morphological segmentation of FIB‐SEM data of highly porous media , 2013, Journal of microscopy.

[56]  Y. K. Chen-Wiegart,et al.  3D analysis of a LiCoO2–Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using x-ray nano-tomography , 2013 .

[57]  D. Wheeler,et al.  FIB/SEM-based calculation of tortuosity in a porous LiCoO2 cathode for a Li-ion battery , 2013 .

[58]  Louis G. Birta,et al.  Modelling and Simulation , 2013, Simulation Foundations, Methods and Applications.

[59]  B. Münch,et al.  The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells , 2013, Journal of Materials Science.

[60]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[61]  Xiangyun Song,et al.  A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes , 2012 .

[62]  Robert J. Kee,et al.  Three-dimensional particle-resolved models of Li-ion batteries to assist the evaluation of empirical parameters in one-dimensional models , 2012 .

[63]  Xiangyun Song,et al.  Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance , 2012 .

[64]  Xiangyun Song,et al.  Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode , 2012 .

[65]  P. Bleuet,et al.  Characterisation of Solid Oxide Fuel Cell Ni–8YSZ substrate by synchrotron X-ray nano-tomography: from 3D reconstruction to microstructure quantification , 2012 .

[66]  Moses Ender,et al.  Quantitative Characterization of LiFePO4 Cathodes Reconstructed by FIB/SEM Tomography , 2012 .

[67]  Yet-Ming Chiang,et al.  An Analytical Method to Determine Tortuosity in Rechargeable Battery Electrodes , 2012 .

[68]  B. Yan,et al.  Three Dimensional Simulation of Galvanostatic Discharge of LiCoO2 Cathode Based on X-ray Nano-CT Images , 2012 .

[69]  Roland Zengerle,et al.  Three-Dimensional Reconstruction of a LiCoO2 Li-Ion Battery Cathode , 2012 .

[70]  Jean-Michel Morel,et al.  Non-Local Means Denoising , 2011, Image Process. Line.

[71]  Shriram Santhanagopalan,et al.  Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales , 2011 .

[72]  Nigel P. Brandon,et al.  Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode , 2011 .

[73]  Xiangyun Song,et al.  Cathode Performance as a Function of Inactive Material and Void Fractions , 2010 .

[74]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[75]  Andrew M. Minor,et al.  Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-Ion Composite Cathode , 2008 .

[76]  Christopher D. Rahn,et al.  Model-based electrochemical estimation of lithium-ion batteries , 2008, 2008 IEEE International Conference on Control Applications.

[77]  Jérôme Darbon,et al.  Fast nonlocal filtering applied to electron cryomicroscopy , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[78]  John N. Harb,et al.  Modeling of Particle-Particle Interactions in Porous Cathodes for Lithium-Ion Batteries , 2007 .

[79]  Chaoyang Wang,et al.  Control oriented 1D electrochemical model of lithium ion battery , 2007 .

[80]  Zhangxin Chen,et al.  Critical review of the impact of tortuosity on diffusion , 2007 .

[81]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[82]  Dennis W. Dees,et al.  Electrochemical Modeling of Lithium-Ion Positive Electrodes during Hybrid Pulse Power Characterization Tests , 2006 .

[83]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[84]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .

[85]  John Newman,et al.  Electrochemical Systems, 3rd Edition , 2004 .

[86]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[87]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[88]  Marc Doyle,et al.  The Use of Mathematical-Modeling in the Design of Lithium Polymer Battery Systems , 1995 .

[89]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[90]  Norman Epstein,et al.  On tortuosity and the tortuosity factor in flow and diffusion through porous media , 1989 .

[91]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[92]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[93]  J. Newman,et al.  Theoretical Analysis of Current Distribution in Porous Electrodes , 1962 .

[94]  A. Michaels Diffusion in a pore of irregular cross section—a simplified treatment , 1959 .

[95]  Eugene E. Petersen,et al.  Diffusion in a pore of varying cross section , 1958 .

[96]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .