Live path: adaptive agent navigation in the interactive virtual world

We present a novel approach to adaptive navigation in the interactive virtual world by using data from the user. Our method constructs automatically a navigation mesh that provides new paths for agents by referencing the user movements. To acquire accurate data samples from all the user data in the interactive world, we use the following techniques: an agent of interest (AOI), a region of interest (ROI) map, and a discretized path graph (DPG). Our method enables adaptive changes to the virtual world over time and provides user-preferred path weights for smart-agent path planning. We have tested the usefulness of our algorithm with several example scenarios from interactive worlds such as video games. In practice, our framework can be applied easily to any type of navigation in an interactive world. In addition, it may prove useful for solving previous pathfinding problems in static navigation planning.

[1]  Nils J. Nilsson,et al.  Correction to "A Formal Basis for the Heuristic Determination of Minimum Cost Paths" , 1972, SGAR.

[2]  Daniel Thalmann,et al.  Crowds of Moving Objects: Navigation Planning and Simulation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[3]  Dinesh Manocha,et al.  Interactive navigation of multiple agents in crowded environments , 2008, I3D '08.

[4]  Mark. Deloura,et al.  Game Programming Gems , 2000 .

[5]  Dinesh Manocha,et al.  Real-time navigation of independent agents using adaptive roadmaps , 2007, VRST '07.

[6]  Daniel Thalmann,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cav.147 , 2022 .

[7]  Anthony Stentz Optimal and Efficient Path Planning for Unknown and Dynamic Environments , 1993 .

[8]  Gregory M. P. O'Hare,et al.  Virtual environment trajectory analysis: a basis for navigational assistance and scene adaptivity , 2005, Future Gener. Comput. Syst..

[9]  Michael Thornton Wyman,et al.  2 – World of Warcraft , 2011 .

[10]  Sung Yong Shin,et al.  Planning biped locomotion using motion capture data and probabilistic roadmaps , 2003, TOGS.

[11]  Dinesh Manocha,et al.  Real-time Path Planning for Virtual Agents in Dynamic Environments , 2007, VR.

[12]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[13]  M. V. Kreveld Computational Geometry , 2000, Springer Berlin Heidelberg.

[14]  Julien Pettré,et al.  Crowds of Moving Objects: Navigation Planning and Simulation , 2007, ICRA.

[15]  Mongie,et al.  WORLD OF WARCRAFT 魔兽世界 纸牌 , 2011 .

[16]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[17]  Yi Li,et al.  Motion Planning of Multiple Agents in Virtual Environments on Parallel Architectures , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[18]  Mark H. Overmars,et al.  Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004) , 2022 .