Microbial extremophiles in evolutionary aspect

The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath the ice crusts of icy moons of Jupiter and Saturn. For astrobiology the focus on the study alkaliphilic microorganisms was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were too small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology and the evolution of life. Extremophilic microorganisms on Earth are models for life that might endure high radiation environments in the ice near the surface of comets or on the icy moons of Jupiter and Saturn and in the seafloor deep beneath the icy crusts of Europa and Enceladus.

[1]  Elena V. Pikuta,et al.  Astrobiological significance of chemolithoautotrophic acidophiles , 2004, SPIE Optics + Photonics.

[2]  Robert M. Haberle,et al.  Sublimation and transport of water from the north residual polar cap on Mars , 1990 .

[3]  掘越 弘毅,et al.  Alkalophilic microorganisms : a new microbial world , 1982 .

[4]  Takashi Itoh,et al.  Anaerovirgula multivorans gen. nov., sp. nov., a novel spore-forming, alkaliphilic anaerobe isolated from Owens Lake, California, USA. , 2006, International journal of systematic and evolutionary microbiology.

[5]  James M Tiedje,et al.  Biodiversity of cryopegs in permafrost. , 2005, FEMS microbiology ecology.

[6]  J. V. Narlikar,et al.  Detection of living cells in stratospheric samples , 2002, SPIE Optics + Photonics.

[7]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[8]  Richard B. Hoover,et al.  Anaerobic decomposition of cellulose by alkaliphilic microbial community of Owens Lake, California , 2005, SPIE Optics + Photonics.

[9]  Richard B. Hoover,et al.  Microorganisms on comets, Europa, and the polar ice caps of Mars , 2004, SPIE Optics + Photonics.

[10]  Richard B. Hoover,et al.  Significance to Astrobiology of Micro-Organisms in Permafrost and Ice , 2001 .

[11]  Bertus van den Burg,et al.  Extremophiles as a source for novel enzymes. , 2003 .

[12]  W. Boynton,et al.  Comparison between polar regions of Mars from HEND/Odyssey data , 2006 .

[13]  The Resistance of Streptococcus fæcalis to Acid and Alkaline Media , 1928 .

[14]  D. Paige,et al.  Variability of Mars' North Polar Water Ice Cap: II. Analysis of Viking IRTM and MAWD Data , 2000 .

[15]  Alexei Yu. Rozanov,et al.  Microfossils, biominerals, and chemical biomarkers in meteorites , 2003, Other Conferences.

[16]  E. Pikuta,et al.  Microbial Extremophiles at the Limits of Life , 2007, Critical reviews in microbiology.

[17]  Richard B. Hoover,et al.  Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California , 2003, Extremophiles.

[18]  D. Cowan The upper temperature for life: where do we draw the line? , 2004 .

[19]  C. B. Lipman,et al.  THE RELATION OF THE REACTION AND OF SALT CONTENT OF THE MEDIUM ON NITRIFYING BACTERIA , 1922, The Journal of general physiology.

[20]  R. Greve Waxing and Waning of the Perennial North Polar H2O Ice Cap of Mars over Obliquity Cycles , 2000 .

[21]  Damien Marsic,et al.  Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska. , 2005, International journal of systematic and evolutionary microbiology.

[22]  Richard B. Hoover,et al.  Anaerobic psychrophiles from Alaska, Antarctica, and Patagonia: implications to possible life on Mars and Europa , 2002, SPIE Optics + Photonics.

[23]  L. Odokuma,et al.  BIOREMEDIATION OF A CRUDE OIL POLLUTED TROPICAL RAIN FOREST SOIL , 2004 .

[24]  A. Yayanos,et al.  Isolation of a Deep-Sea Barophilic Bacterium and Some of Its Growth Characteristics , 1979, Science.

[25]  H. Freeze,et al.  Thermus aquaticus gen. n. and sp. n., a Nonsporulating Extreme Thermophile , 1969, Journal of bacteriology.

[26]  B. Tindall,et al.  Natronobacterium gen. nov. and Natronococcus gen. nov., Two New Genera of Haloalkaliphilic Archaebacteria , 1984 .

[27]  Erwan Corre,et al.  Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. , 2003, International journal of systematic and evolutionary microbiology.

[28]  Hans-Peter Klenk,et al.  Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., Two Species of Hyperacidophilic, Thermophilic, Heterotrophic, Aerobic Archaea , 1996 .

[29]  F. Palluconi,et al.  Martian North Pole Summer Temperatures: Dirty Water Ice , 1976, Science.

[30]  R. E. Hungate Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes , 1969 .

[31]  Richard B. Hoover,et al.  Anaerobic halo- alkaliphilic bacterial community of athalassic, hypersaline Mono lake and Owens Lake in California , 2003, SPIE Astronomical Telescopes + Instrumentation.

[32]  D. Hafenbradl,et al.  Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C , 1997, Extremophiles.

[33]  G. Pettengill,et al.  Observations of the north polar region of Mars from the Mars orbiter laser altimeter. , 1998, Science.

[34]  N. S. Duxbury,et al.  Super-long anabiosis of ancient microorganisms in ice and terrestrial models for development of methods to search for life on Mars, Europa and other planetary bodies , 2006 .

[35]  R. Mancinelli,et al.  Brines and evaporites: analogs for Martian life , 2004 .

[36]  Richard B. Hoover,et al.  Growth of the facultative anaerobes from Antarctica, Alaska, and Patagonia at low temperatures , 2004, SPIE Optics + Photonics.

[37]  Richard B. Hoover,et al.  Fossils of Prokaryotic microorganisms in the Orgueil meteorite , 2006, SPIE Optics + Photonics.

[38]  Richard B. Hoover,et al.  Patterned Ground As An Evidence Of Water On Mars A Comparison with Planet Earth , 2001 .

[39]  Richard B. Hoover,et al.  Trichococcus patagoniensis sp. nov., a facultative anaerobe that grows at −5 °C, isolated from penguin guano in Chilean Patagonia , 2006 .

[40]  P. R. Elliker,et al.  Utilization of carbohydrates and amino acids by Micrococcus radiodurans. , 1960, Canadian journal of microbiology.

[41]  A. S. Kozyrev,et al.  Soil Water Content on Mars as Estimated from Neutron Measurements by the HEND Instrument Onboard the 2001 Mars Odyssey Spacecraft , 2004 .

[42]  Richard B. Hoover,et al.  Psychrophiles and astrobiology: microbial life of frozen worlds , 2003, Other Conferences.

[44]  Richard B. Hoover,et al.  Comparative Results of Using Different Methods for Discovery of Microorganisms in very Ancient Layers of the Central Antarctic Glacier above the Lake Vostok , 2002 .

[45]  Richard B. Hoover,et al.  Diatoms on earth, comets, europa and in interstellar space , 1986 .

[46]  J. T. Staley,et al.  Poles apart: biodiversity and biogeography of sea ice bacteria. , 1999, Annual review of microbiology.

[47]  D. Lovley,et al.  Extending the Upper Temperature Limit for Life , 2003, Science.

[48]  Takashi Itoh,et al.  Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent. , 2007, International journal of systematic and evolutionary microbiology.

[49]  B. Jørgensen,et al.  Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica s , 1999, International journal of systematic bacteriology.