Programming gene expression with combinatorial promoters

Promoters control the expression of genes in response to one or more transcription factors (TFs). The architecture of a promoter is the arrangement and type of binding sites within it. To understand natural genetic circuits and to design promoters for synthetic biology, it is essential to understand the relationship between promoter function and architecture. We constructed a combinatorial library of random promoter architectures. We characterized 288 promoters in Escherichia coli, each containing up to three inputs from four different TFs. The library design allowed for multiple −10 and −35 boxes, and we observed varied promoter strength over five decades. To further analyze the functional repertoire, we defined a representation of promoter function in terms of regulatory range, logic type, and symmetry. Using these results, we identified heuristic rules for programming gene expression with combinatorial promoters.

[1]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[2]  M. Yarus Recognition of nucleotide sequences. , 1969, Annual review of biochemistry.

[3]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[4]  J. Beckwith,et al.  Mechanism of activation of catabolite-sensitive genes: a positive control system. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Ogden,et al.  The Escherichia coli L-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Barbé,et al.  A multifunctional gene (tetR) controls Tn10-encoded tetracycline resistance , 1982, Journal of bacteriology.

[7]  D. K. Hawley,et al.  Compilation and analysis of Escherichia coli promoter DNA sequences. , 1983, Nucleic acids research.

[8]  H. Bujard,et al.  Functional dissection of Escherichia coli promoters: information in the transcribed region is involved in late steps of the overall process. , 1986, The EMBO journal.

[9]  M Ptashne,et al.  Cooperative binding of lambda repressors to sites separated by integral turns of the DNA helix. , 1986, Cell.

[10]  E. Hamilton,et al.  Three binding sites for AraC protein are required for autoregulation of araC in Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M Lanzer,et al.  Promoters largely determine the efficiency of repressor action. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. W. Davis,et al.  Position and density effects on repression by stationary and mobile DNA-binding proteins. , 1989, Genes & development.

[13]  S. Busby,et al.  Recognition of nucleotide sequences at the Escherichia coli galactose operon P1 promoter by RNA polymerase. , 1989, Gene.

[14]  W. Hillen,et al.  Quantitative analysis of Tn10 Tet repressor binding to a complete set of tet operator mutants. , 1990, Nucleic acids research.

[15]  J. Collado-Vides,et al.  Control site location and transcriptional regulation in Escherichia coli. , 1991, Microbiological reviews.

[16]  T. Baldwin,et al.  Identification of a distantly located regulatory element in the luxD gene required for negative autoregulation of the Vibrio fischeri luxR gene. , 1992, The Journal of biological chemistry.

[17]  R. Gourse,et al.  A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. , 1993, Science.

[18]  Richard H. Ebright,et al.  Promoter structure, promoter recognition, and transcription activation in prokaryotes , 1994, Cell.

[19]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[20]  J. Joung,et al.  Synergistic activation of transcription by bacteriophage lambda cI protein and E. coli cAMP receptor protein. , 1994, Science.

[21]  B. Müller-Hill,et al.  Quality and position of the three lac operators of E. coli define efficiency of repression. , 1994, The EMBO journal.

[22]  A. Skerra Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. , 1994, Gene.

[23]  X Zhang,et al.  Transcription activation parameters at ara pBAD. , 1996, Journal of molecular biology.

[24]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[25]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[26]  C. Gross,et al.  The functional and regulatory roles of sigma factors in transcription. , 1998, Cold Spring Harbor symposia on quantitative biology.

[27]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: elements of the luxI promoter , 1999, Molecular microbiology.

[28]  E. P. Greenberg,et al.  Conversion of the Vibrio fischeriTranscriptional Activator, LuxR, to a Repressor , 2000, Journal of bacteriology.

[29]  Jeff Hasty,et al.  Engineered gene circuits , 2002, Nature.

[30]  C. Southward,et al.  Genomic Profiling of Iron-Responsive Genes in Salmonella enterica Serovar Typhimurium by High-Throughput Screening of a Random Promoter Library , 2003, Journal of bacteriology.

[31]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Robert Schleif,et al.  AraC protein: a love-hate relationship. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[33]  Nicolas E. Buchler,et al.  On schemes of combinatorial transcription logic , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Leibler,et al.  DNA looping and physical constraints on transcription regulation. , 2003, Journal of molecular biology.

[35]  U. Alon,et al.  Detailed map of a cis-regulatory input function , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[37]  S. Basu,et al.  Spatiotemporal control of gene expression with pulse-generating networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[39]  J. W. Little,et al.  Sequence tolerance of the phage lambda PRM promoter: implications for evolution of gene regulatory circuitry. , 2004, Journal of bacteriology.

[40]  Mark Ptashne,et al.  A Genetic Switch, Phage Lambda Revisited , 2004 .

[41]  S. Busby,et al.  The regulation of bacterial transcription initiation , 2004, Nature Reviews Microbiology.

[42]  D. Endy Foundations for engineering biology , 2005, Nature.

[43]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[44]  M. Elowitz,et al.  Reconstruction of genetic circuits , 2005, Nature.

[45]  Hernan G. Garcia,et al.  Transcriptional Regulation by the Numbers 2: Applications , 2004, q-bio/0412011.

[46]  J. Kahn,et al.  Bacterial repression loops require enhanced DNA flexibility. , 2005, Journal of molecular biology.

[47]  Hernan G. Garcia Transcriptional Regulation by the Numbers , 2005 .

[48]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[49]  S. Basu,et al.  A synthetic multicellular system for programmed pattern formation , 2005, Nature.

[50]  Mark Ptashne,et al.  Regulation of transcription: from lambda to eukaryotes. , 2005, Trends in biochemical sciences.

[51]  Julio Collado-Vides,et al.  RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions , 2005, Nucleic Acids Res..

[52]  Pieter Rein ten Wolde,et al.  Transcriptional Regulation by Competing Transcription Factor Modules , 2006, PLoS Comput. Biol..

[53]  T. Henkin Faculty Opinions recommendation of rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. , 2006 .

[54]  S. Atsumi,et al.  A synthetic phage λ regulatory circuit , 2006, Proceedings of the National Academy of Sciences.

[55]  S. Atsumi,et al.  A synthetic phage lambda regulatory circuit. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  U. Alon,et al.  Plasticity of the cis-Regulatory Input Function of a Gene , 2006, PLoS biology.

[57]  Melanie B. Berkmen,et al.  rRNA Promoter Regulation by Nonoptimal Binding of σ Region 1.2: An Additional Recognition Element for RNA Polymerase , 2006, Cell.

[58]  Nicholas J. Guido,et al.  A bottom-up approach to gene regulation , 2006, Nature.

[59]  Eric D. Siggia,et al.  Gene Expression From Random Libraries of Yeast Promoters , 2006, Genetics.

[60]  Monica Riley,et al.  Escherichia coli K-12: a cooperatively developed annotation snapshot—2005 , 2006, Nucleic acids research.

[61]  Steven Hahn,et al.  Transcriptional regulation , 2008, EMBO reports.

[62]  陸委會網站管理員 Organization and Function , 2009 .