Toward template-based tolerancing from a Bayesian viewpoint

A novel approach to part tolerancing with measurement error based on Bayesian methods is presented. Parts are represented by parameterised constraint templates. A priori knowledge about expected part geometry is introduced through a prior distribution and template parameter distributions (rather than just nominal parameter values) estimated from data sets using Gibbs sampling. The case of a toleranced dimension and linear constraints is analyzed. An extension to nonlinear constraints is briefly described.<<ETX>>

[1]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[2]  R. C. Hillyard,et al.  Analysis of dimensions and tolerances in computer-aided mechanical design , 1978 .

[3]  Joseph L. Mundy,et al.  Template Guided Visual Inspection , 1992, ECCV.

[4]  David C. Gossard,et al.  Representing dimensions, tolerances, and features in MCAE systems , 1988, IEEE Computer Graphics and Applications.

[5]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[6]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[7]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[8]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[9]  J. N. Siddall,et al.  The Optimization Problem With Optimal Tolerance Assignment and Full Acceptance , 1981 .

[10]  A. Gelfand,et al.  Hierarchical Bayes Models for the Progression of HIV Infection Using Longitudinal CD4 T-Cell Numbers , 1992 .

[11]  Pandu R. Tadikamalla,et al.  Computer generation of gamma random variables , 1978, CACM.

[12]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[13]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[14]  Aristides A. G. Requicha,et al.  Toward a Theory of Geometric Tolerancing , 1983 .

[15]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Joseph L. Mundy,et al.  Modeling generic polyhedral objects with constraints , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  W. H. Greenwood,et al.  A New Tolerance Analysis Method for Designers and Manufacturers , 1987 .

[18]  I. C. Braid,et al.  Characterizing non-ideal shapes in terms of dimensions and tolerances , 1978, SIGGRAPH.

[19]  R. Light,et al.  Modification of geometric models through variational geometry , 1982 .

[20]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[21]  Joshua U. Turner,et al.  New methods for tolerance analysis in solid modeling , 1988, [Proceedings] 1988 International Conference on Computer Integrated Manufacturing.

[22]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .