Navier-stokes equations: Theory and approximation
暂无分享,去创建一个
[1] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[2] Roger Temam,et al. Incremental unknowns, multilevel methods and the numerical simulation of turbulence , 1998 .
[3] R. Sani,et al. Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .
[4] J. B. Burie,et al. Multilevel Methods in Space and Time for the Navier--Stokes Equations , 1997 .
[5] R. Temam,et al. Optimal and robust approaches for linear and nonlinear regulation problems in fluid mechanics , 1997 .
[6] Jacques Laminie,et al. Dynamical Multilevel Schemes for the Solution of Evolution Equations by Hierarchical Finite Element , 1997 .
[7] Yanren Hou,et al. Fourier nonlinear Galerkin method for Navier-Stokes equations , 1996 .
[8] T. T. Medjo. The Navier-Stokes equations in the vorticity-velocity formulation: the two-dimensional case , 1996 .
[9] Yinnian He,et al. Nonlinear Galerkin method and two‐step method for the Navier‐Stokes equations , 1996 .
[10] C. Bendtsen. Highly stable parallel Runge-Kutta methods , 1996 .
[11] Roger Temam,et al. A nonlinear galerkin method: The two-level fourier-collocation case , 1995 .
[12] Jinchao Xu,et al. Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .
[13] M. Jolly,et al. On computing the long-time solution of the two-dimensional Navier-Stokes equations , 1995 .
[14] Donald A. Jones,et al. On the effectiveness of the approximate inertial manifold—a computational study , 1995 .
[15] T. Tachim Medjo,et al. Vorticity-Velocity formulation for the stationary Navier-Stokes equations: The three-dimensional case , 1995 .
[16] Roger Temam,et al. Incremental unknowns for solving nonlinear eigenvalue problems: New multiresolution methods , 1995 .
[17] Jie Shen,et al. On error estimates of the penalty method for unsteady Navier-Stokes equations , 1995 .
[18] Jie Shen,et al. Nonlinear Galerkin method using Chebyshev and Legendre polynomials I.: the one-dimensional case , 1995 .
[19] P. Fabrie,et al. EFFECTIVE DOWNSTREAM BOUNDARY CONDITIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS , 1994 .
[20] R. Temam,et al. Implementation and numerical analysis of the nonlinear Galerkin methods with finite elements discretization , 1994 .
[21] C. Greengard,et al. Convergence of euler‐stokes splitting of the navier‐stokes equations , 1994 .
[22] M. Marion,et al. Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .
[23] R. Sani,et al. Résumé and remarks on the open boundary condition minisymposium , 1994 .
[24] Jie Shen. Remarks on the pressure error estimates for the projection methods , 1994 .
[25] L. Kaitai,et al. Full discrete nonlinear galerkin method for the Navier-Stokes equations , 1994 .
[26] R. Rannacher,et al. On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method , 1993 .
[27] Roger Temam,et al. Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns , 1993 .
[28] Vincent Liu. A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier-Stokes equations , 1993 .
[29] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[30] R. Temam,et al. Implementation of finite element nonlinear Galerkin methods using hierarchical bases , 1993 .
[31] R. Temam,et al. Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method , 1993 .
[32] D. Gottlieb,et al. Implementation of the nonlinear Galerkin method with pseudospectral (collocation) discretizations , 1993 .
[33] Edriss S. Titi,et al. On the rate of convergence of the nonlinear Galerkin methods , 1993 .
[34] Roger Temam,et al. Incremental Unknowns in Finite Differences: Condition Number of the Matrix , 1993, SIAM J. Matrix Anal. Appl..
[35] Jie Shen,et al. On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations , 1992 .
[36] M. Marion,et al. On the construction of families of approximate inertial manifolds , 1992 .
[37] M. Marion,et al. A class of numerical algorithms for large time integration: the nonlinear Galerkin methods , 1992 .
[38] M. Vishik,et al. Attractors of Evolution Equations , 1992 .
[39] Jie Shen. On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .
[40] S. Orszag,et al. High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .
[41] Roger Temam,et al. Remark on the pressure boundary condition for the projection method , 1991 .
[42] Edriss S. Titi,et al. Dissipativity of numerical schemes , 1991 .
[43] O. Ladyzhenskaya,et al. Attractors for Semigroups and Evolution Equations , 1991 .
[44] A. Kolmogorov,et al. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[45] Jie Shen,et al. Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .
[46] P. Gresho. Some current CFD issues relevant to the incompressible Navier-Stokes equations , 1991 .
[47] Roger Temam,et al. Subgrid modelling and the interaction of small and large wavelengths in turbulent flows , 1991 .
[48] R. Temam,et al. Inertial manifolds and the slow manifolds in meteorology , 1991, Differential and Integral Equations.
[49] Harry Yserentant,et al. Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .
[50] R. Temam,et al. On some control problems in fluid mechanics , 1990 .
[51] Philip M. Gresho,et al. On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .
[52] Charles-Henri Bruneau,et al. An efficient scheme for solving steady incompressible Navier-Stokes equations , 1990 .
[53] Roger Temam,et al. A nonlinear Galerkin method for the Navier-Stokes equations , 1990 .
[54] Edriss S. Titi,et al. On approximate Inertial Manifolds to the Navier-Stokes equations , 1990 .
[55] Roger Temam,et al. The nonlinear Galerkin method in computational fluid dynamics , 1990 .
[56] R. Temam,et al. Nonlinear Galerkin methods: The finite elements case , 1990 .
[57] H. Kreiss,et al. Smallest scale estimates for the Navier-Stokes equations for incompressible fluids , 1990 .
[58] Jacques Laminie,et al. Solving Navier-Stokes Equations on the Cedar Multi-Cluster System , 1989, PPSC.
[59] R. Temam,et al. Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .
[60] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[61] R. Temam,et al. Nonlinear Galerkin methods , 1989 .
[62] M. Marion,et al. Approximate inertial manifolds for reaction-diffusion equations in high space dimension , 1989 .
[63] Michelle Schatzman,et al. Artificial boundary conditions for incompressible viscous flows , 1989 .
[64] Heinz-Otto Kreiss,et al. On the smallest scale for the incompressible Navier-Stokes equations , 1989, Theoretical and Computational Fluid Dynamics.
[65] G. Sell,et al. On the computation of inertial manifolds , 1988 .
[66] G. Sell,et al. Inertial manifolds for nonlinear evolutionary equations , 1988 .
[67] Jean-Michel Ghidaglia,et al. Attractors for the penalized Navier-Stokes equations , 1988 .
[68] S. Orszag,et al. Boundary conditions for incompressible flows , 1986 .
[69] J. Kan. A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .
[70] R. Glowinski,et al. Numerical Methods for Nonlinear Variational Problems , 1985 .
[71] Christine Bernardi,et al. A Conforming Finite Element Method for the Time-Dependent Navier–Stokes Equations , 1985 .
[72] R. Temam,et al. Determining modes and fractal dimension of turbulent flows , 1985, Journal of Fluid Mechanics.
[73] Tosio Kato,et al. Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .
[74] P. Moin,et al. Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .
[75] Joseph Tribbia,et al. A simple scheme for high-order nonlinear normal mode initialization , 1984 .
[76] C. Fletcher. Computational Galerkin Methods , 1983 .
[77] R. Temam,et al. Number of Modes Governing Two-Dimensional Viscous, Incompressible Flows , 1983 .
[78] R. Kohn,et al. Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .
[79] J. Tribbia. On variational normal mode initialization , 1982 .
[80] R. Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .
[81] T. Taylor,et al. Computational methods for fluid flow , 1982 .
[82] Michael Ghil,et al. Dynamic Meteorology: Data Assimilation Methods , 1981 .
[83] R. Daley. Normal mode initialization , 1981 .
[84] E. Lorenz. Attractor Sets and Quasi-Geostrophic Equilibrium , 1980 .
[85] J. Tribbia. Nonlinear Initialization on an Equatorial Beta-Plane , 1979 .
[86] R. Temam. Navier-Stokes Equations , 1977 .
[87] R. Temam. On the Euler equations of incompressible perfect fluids , 1975 .
[88] Alexandre J. Chorin,et al. On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .
[89] R. Temam. Sur la stabilité et la convergence de la méthode des pas fractionnaires , 1968 .
[90] P. Pedley,et al. An Introduction to Fluid Dynamics , 1968 .
[91] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[92] R. Kraichnan. Inertial Ranges in Two‐Dimensional Turbulence , 1967 .
[93] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[94] G. Batchelor,et al. The theory of homogeneous turbulence , 1954 .
[95] A. Kolmogorov. Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[96] T. Kármán,et al. On the statistical theory of turbulence , 1937 .
[97] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[98] Eun-Jae Park,et al. The P‐version of the mixed‐finite element method for nonlinear second‐order elliptic problems , 1996 .
[99] P. Fabrie,et al. New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result , 1996 .
[100] P. Fabrie,et al. Computation of incompressible flows and direct simulation of transition to turbulence , 1995 .
[101] M. Marion,et al. Schémas à deux niveaux pour les problèmes mixtes , 1995 .
[102] C. Doering,et al. Applied analysis of the Navier-Stokes equations: Index , 1995 .
[103] R. Temam,et al. Convergent families of approximate inertial manifolds , 1994 .
[104] Alexandre J. Chorin,et al. Vorticity and turbulence , 1994 .
[105] O. Goubet. Séparation des variables dans le problème de Stokes. Application à son approximation multiéchelles éléments finis , 1992 .
[106] Reimund Rautmann,et al. The Navier-Stokes Equations II — Theory and Numerical Methods , 1992 .
[107] P. M. Gresho,et al. Some Interesting Issues in Incompressible Fluid Dynamics, Both in the Continuum and in Numerical Simulation , 1991 .
[108] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[109] P. Gresho. Incompressible Fluid Dynamics: Some Fundamental Formulation Issues , 1991 .
[110] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[111] G. Marchuk. Splitting and alternating direction methods , 1990 .
[112] A. Majda. The interaction of nonlinear analysis and modern applied mathematics , 1990 .
[113] Roger Temam,et al. Induced trajectories and approximate inertial manifolds , 1989 .
[114] M. Marion,et al. Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation , 1989 .
[115] Jie Shen,et al. Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations , 1989 .
[116] R. Temam,et al. Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .
[117] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[118] R. Temam,et al. Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents , 1987 .
[119] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .
[120] R. Temam,et al. Attractors Representing Turbulent Flows , 1985 .
[121] Wolf von Wahl,et al. The equations of Navier-Stokes and abstract parabolic equations , 1985 .
[122] R. Temam,et al. Variétés inertielles des équations différentielles dissipatives , 1985 .
[123] A. Majda. Compressible fluid flow and systems of conservation laws in several space variables , 1984 .
[124] R. Dautray,et al. Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .
[125] R. Temam. Behaviour at Time t=0 of the Solutions of Semi-Linear Evolution Equations. , 1982 .
[126] R. Sani,et al. Solution of the time-dependent incompressible Navier-Stokes equations via a penalty Galerkin finite element method , 1981 .
[127] R. Daley. The Normal Mode Approach to the Initialization Problem , 1981 .
[128] Thierry Gallouët,et al. Nonlinear Schrödinger evolution equations , 1980 .
[129] J. G. Heywood. Classical solutions of the Navier-Stokes equations , 1980 .
[130] J. Marsden,et al. A mathematical introduction to fluid mechanics , 1979 .
[131] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[132] H. Levine. Uniqueness and growth of weak solutions to certain linear differential equations in Hilbert space , 1975 .
[133] R. Temam,et al. Analyse convexe et problèmes variationnels , 1974 .
[134] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[135] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[136] R. Temam. Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .
[137] Edward N. Lorenz,et al. The nature and theory of the general circulation of the atmosphere , 1967 .
[138] J. Cea. Approximation variationnelle des problèmes aux limites , 1964 .
[139] G. Stampacchia,et al. I problemi al contorno per le equazioni differenziali di tipo ellittico , 1958 .
[140] L. Sirovich,et al. Partial Differential Equations , 1941 .
[141] Jean Leray,et al. Essai sur les mouvements plans d'un fluide visqueux que limitent des parois. , 1934 .
[142] Jean Leray,et al. Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .
[143] A. Debussche,et al. IC S THE NONLINEAR GALERKIN METHOD : A MULTI-SCALE METHOD APPLIED TO THE SIMULATION OF HOMOGENEOUS TURBULENT FLOWS , 2022 .