Navier-stokes equations: Theory and approximation

[1]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[2]  Roger Temam,et al.  Incremental unknowns, multilevel methods and the numerical simulation of turbulence , 1998 .

[3]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[4]  J. B. Burie,et al.  Multilevel Methods in Space and Time for the Navier--Stokes Equations , 1997 .

[5]  R. Temam,et al.  Optimal and robust approaches for linear and nonlinear regulation problems in fluid mechanics , 1997 .

[6]  Jacques Laminie,et al.  Dynamical Multilevel Schemes for the Solution of Evolution Equations by Hierarchical Finite Element , 1997 .

[7]  Yanren Hou,et al.  Fourier nonlinear Galerkin method for Navier-Stokes equations , 1996 .

[8]  T. T. Medjo The Navier-Stokes equations in the vorticity-velocity formulation: the two-dimensional case , 1996 .

[9]  Yinnian He,et al.  Nonlinear Galerkin method and two‐step method for the Navier‐Stokes equations , 1996 .

[10]  C. Bendtsen Highly stable parallel Runge-Kutta methods , 1996 .

[11]  Roger Temam,et al.  A nonlinear galerkin method: The two-level fourier-collocation case , 1995 .

[12]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[13]  M. Jolly,et al.  On computing the long-time solution of the two-dimensional Navier-Stokes equations , 1995 .

[14]  Donald A. Jones,et al.  On the effectiveness of the approximate inertial manifold—a computational study , 1995 .

[15]  T. Tachim Medjo,et al.  Vorticity-Velocity formulation for the stationary Navier-Stokes equations: The three-dimensional case , 1995 .

[16]  Roger Temam,et al.  Incremental unknowns for solving nonlinear eigenvalue problems: New multiresolution methods , 1995 .

[17]  Jie Shen,et al.  On error estimates of the penalty method for unsteady Navier-Stokes equations , 1995 .

[18]  Jie Shen,et al.  Nonlinear Galerkin method using Chebyshev and Legendre polynomials I.: the one-dimensional case , 1995 .

[19]  P. Fabrie,et al.  EFFECTIVE DOWNSTREAM BOUNDARY CONDITIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS , 1994 .

[20]  R. Temam,et al.  Implementation and numerical analysis of the nonlinear Galerkin methods with finite elements discretization , 1994 .

[21]  C. Greengard,et al.  Convergence of euler‐stokes splitting of the navier‐stokes equations , 1994 .

[22]  M. Marion,et al.  Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .

[23]  R. Sani,et al.  Résumé and remarks on the open boundary condition minisymposium , 1994 .

[24]  Jie Shen Remarks on the pressure error estimates for the projection methods , 1994 .

[25]  L. Kaitai,et al.  Full discrete nonlinear galerkin method for the Navier-Stokes equations , 1994 .

[26]  R. Rannacher,et al.  On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method , 1993 .

[27]  Roger Temam,et al.  Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns , 1993 .

[28]  Vincent Liu A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier-Stokes equations , 1993 .

[29]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[30]  R. Temam,et al.  Implementation of finite element nonlinear Galerkin methods using hierarchical bases , 1993 .

[31]  R. Temam,et al.  Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method , 1993 .

[32]  D. Gottlieb,et al.  Implementation of the nonlinear Galerkin method with pseudospectral (collocation) discretizations , 1993 .

[33]  Edriss S. Titi,et al.  On the rate of convergence of the nonlinear Galerkin methods , 1993 .

[34]  Roger Temam,et al.  Incremental Unknowns in Finite Differences: Condition Number of the Matrix , 1993, SIAM J. Matrix Anal. Appl..

[35]  Jie Shen,et al.  On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations , 1992 .

[36]  M. Marion,et al.  On the construction of families of approximate inertial manifolds , 1992 .

[37]  M. Marion,et al.  A class of numerical algorithms for large time integration: the nonlinear Galerkin methods , 1992 .

[38]  M. Vishik,et al.  Attractors of Evolution Equations , 1992 .

[39]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[40]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[41]  Roger Temam,et al.  Remark on the pressure boundary condition for the projection method , 1991 .

[42]  Edriss S. Titi,et al.  Dissipativity of numerical schemes , 1991 .

[43]  O. Ladyzhenskaya,et al.  Attractors for Semigroups and Evolution Equations , 1991 .

[44]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[45]  Jie Shen,et al.  Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .

[46]  P. Gresho Some current CFD issues relevant to the incompressible Navier-Stokes equations , 1991 .

[47]  Roger Temam,et al.  Subgrid modelling and the interaction of small and large wavelengths in turbulent flows , 1991 .

[48]  R. Temam,et al.  Inertial manifolds and the slow manifolds in meteorology , 1991, Differential and Integral Equations.

[49]  Harry Yserentant,et al.  Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .

[50]  R. Temam,et al.  On some control problems in fluid mechanics , 1990 .

[51]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[52]  Charles-Henri Bruneau,et al.  An efficient scheme for solving steady incompressible Navier-Stokes equations , 1990 .

[53]  Roger Temam,et al.  A nonlinear Galerkin method for the Navier-Stokes equations , 1990 .

[54]  Edriss S. Titi,et al.  On approximate Inertial Manifolds to the Navier-Stokes equations , 1990 .

[55]  Roger Temam,et al.  The nonlinear Galerkin method in computational fluid dynamics , 1990 .

[56]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[57]  H. Kreiss,et al.  Smallest scale estimates for the Navier-Stokes equations for incompressible fluids , 1990 .

[58]  Jacques Laminie,et al.  Solving Navier-Stokes Equations on the Cedar Multi-Cluster System , 1989, PPSC.

[59]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[60]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[61]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[62]  M. Marion,et al.  Approximate inertial manifolds for reaction-diffusion equations in high space dimension , 1989 .

[63]  Michelle Schatzman,et al.  Artificial boundary conditions for incompressible viscous flows , 1989 .

[64]  Heinz-Otto Kreiss,et al.  On the smallest scale for the incompressible Navier-Stokes equations , 1989, Theoretical and Computational Fluid Dynamics.

[65]  G. Sell,et al.  On the computation of inertial manifolds , 1988 .

[66]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[67]  Jean-Michel Ghidaglia,et al.  Attractors for the penalized Navier-Stokes equations , 1988 .

[68]  S. Orszag,et al.  Boundary conditions for incompressible flows , 1986 .

[69]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[70]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[71]  Christine Bernardi,et al.  A Conforming Finite Element Method for the Time-Dependent Navier–Stokes Equations , 1985 .

[72]  R. Temam,et al.  Determining modes and fractal dimension of turbulent flows , 1985, Journal of Fluid Mechanics.

[73]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[74]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[75]  Joseph Tribbia,et al.  A simple scheme for high-order nonlinear normal mode initialization , 1984 .

[76]  C. Fletcher Computational Galerkin Methods , 1983 .

[77]  R. Temam,et al.  Number of Modes Governing Two-Dimensional Viscous, Incompressible Flows , 1983 .

[78]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[79]  J. Tribbia On variational normal mode initialization , 1982 .

[80]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[81]  T. Taylor,et al.  Computational methods for fluid flow , 1982 .

[82]  Michael Ghil,et al.  Dynamic Meteorology: Data Assimilation Methods , 1981 .

[83]  R. Daley Normal mode initialization , 1981 .

[84]  E. Lorenz Attractor Sets and Quasi-Geostrophic Equilibrium , 1980 .

[85]  J. Tribbia Nonlinear Initialization on an Equatorial Beta-Plane , 1979 .

[86]  R. Temam Navier-Stokes Equations , 1977 .

[87]  R. Temam On the Euler equations of incompressible perfect fluids , 1975 .

[88]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[89]  R. Temam Sur la stabilité et la convergence de la méthode des pas fractionnaires , 1968 .

[90]  P. Pedley,et al.  An Introduction to Fluid Dynamics , 1968 .

[91]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[92]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[93]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[94]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[95]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[96]  T. Kármán,et al.  On the statistical theory of turbulence , 1937 .

[97]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[98]  Eun-Jae Park,et al.  The P‐version of the mixed‐finite element method for nonlinear second‐order elliptic problems , 1996 .

[99]  P. Fabrie,et al.  New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result , 1996 .

[100]  P. Fabrie,et al.  Computation of incompressible flows and direct simulation of transition to turbulence , 1995 .

[101]  M. Marion,et al.  Schémas à deux niveaux pour les problèmes mixtes , 1995 .

[102]  C. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[103]  R. Temam,et al.  Convergent families of approximate inertial manifolds , 1994 .

[104]  Alexandre J. Chorin,et al.  Vorticity and turbulence , 1994 .

[105]  O. Goubet Séparation des variables dans le problème de Stokes. Application à son approximation multiéchelles éléments finis , 1992 .

[106]  Reimund Rautmann,et al.  The Navier-Stokes Equations II — Theory and Numerical Methods , 1992 .

[107]  P. M. Gresho,et al.  Some Interesting Issues in Incompressible Fluid Dynamics, Both in the Continuum and in Numerical Simulation , 1991 .

[108]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[109]  P. Gresho Incompressible Fluid Dynamics: Some Fundamental Formulation Issues , 1991 .

[110]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[111]  G. Marchuk Splitting and alternating direction methods , 1990 .

[112]  A. Majda The interaction of nonlinear analysis and modern applied mathematics , 1990 .

[113]  Roger Temam,et al.  Induced trajectories and approximate inertial manifolds , 1989 .

[114]  M. Marion,et al.  Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation , 1989 .

[115]  Jie Shen,et al.  Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations , 1989 .

[116]  R. Temam,et al.  Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .

[117]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[118]  R. Temam,et al.  Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents , 1987 .

[119]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[120]  R. Temam,et al.  Attractors Representing Turbulent Flows , 1985 .

[121]  Wolf von Wahl,et al.  The equations of Navier-Stokes and abstract parabolic equations , 1985 .

[122]  R. Temam,et al.  Variétés inertielles des équations différentielles dissipatives , 1985 .

[123]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[124]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[125]  R. Temam Behaviour at Time t=0 of the Solutions of Semi-Linear Evolution Equations. , 1982 .

[126]  R. Sani,et al.  Solution of the time-dependent incompressible Navier-Stokes equations via a penalty Galerkin finite element method , 1981 .

[127]  R. Daley The Normal Mode Approach to the Initialization Problem , 1981 .

[128]  Thierry Gallouët,et al.  Nonlinear Schrödinger evolution equations , 1980 .

[129]  J. G. Heywood Classical solutions of the Navier-Stokes equations , 1980 .

[130]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[131]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[132]  H. Levine Uniqueness and growth of weak solutions to certain linear differential equations in Hilbert space , 1975 .

[133]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[134]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[135]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[136]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[137]  Edward N. Lorenz,et al.  The nature and theory of the general circulation of the atmosphere , 1967 .

[138]  J. Cea Approximation variationnelle des problèmes aux limites , 1964 .

[139]  G. Stampacchia,et al.  I problemi al contorno per le equazioni differenziali di tipo ellittico , 1958 .

[140]  L. Sirovich,et al.  Partial Differential Equations , 1941 .

[141]  Jean Leray,et al.  Essai sur les mouvements plans d'un fluide visqueux que limitent des parois. , 1934 .

[142]  Jean Leray,et al.  Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .

[143]  A. Debussche,et al.  IC S THE NONLINEAR GALERKIN METHOD : A MULTI-SCALE METHOD APPLIED TO THE SIMULATION OF HOMOGENEOUS TURBULENT FLOWS , 2022 .