COFRE: a fuzzy rule coevolutionary approach for multiclass classification problems

This paper presents a technique for solving multiclass classification problems using a revolutionary approach. There are m populations, where m is the number of classes. Individuals from different classes work together to define a classifier, while individuals from the same population compete among them to define the best rule for a class. Finally, the best classifier is selected according to its performance. Experiments are conducted on different publicly available data sets.

[1]  O. Nasraoui,et al.  Complete expression trees for evolving fuzzy classifier systems with genetic algorithms and application to network intrusion detection , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[2]  Johannes Fürnkranz,et al.  Round Robin Classification , 2002, J. Mach. Learn. Res..

[3]  F. Hoffmann Boosting a genetic fuzzy classifier , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[4]  Francisco Herrera,et al.  Encouraging Cooperation in the Genetic Iterative Rule Learning Approach for Qualitative Modeling , 1999 .

[5]  Yi-Chung Hu,et al.  Finding fuzzy classification rules using data mining techniques , 2003, Pattern Recognit. Lett..

[6]  H. Ishibuchi,et al.  Three-objective genetic algorithms for designing compact fuzzy rule-based systems for pattern classification problems , 2001 .

[7]  K. De Jong,et al.  Using Genetic Algorithms for Concept Learning , 2004, Machine Learning.

[8]  F. Herrera A General Study on Genetic Fuzzy Systems , 1993 .

[9]  Raúl Pérez,et al.  Completeness and consistency conditions for learning fuzzy rules , 1998, Fuzzy Sets Syst..

[10]  Jonatan Gómez A Framework for Evolving Fuzzy Rule Classifiers , 2004 .

[11]  Jonatan Gómez,et al.  Evolution of Fuzzy Rule Based Classifiers , 2004, GECCO.

[12]  Richard K. Belew,et al.  New Methods for Competitive Coevolution , 1997, Evolutionary Computation.

[13]  Moshe Sipper,et al.  Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling , 2001, IEEE Trans. Fuzzy Syst..

[14]  Cezary Z. Janikow,et al.  A knowledge-intensive genetic algorithm for supervised learning , 1993, Machine Learning.

[15]  Qiang Shen,et al.  A rough-fuzzy approach for generating classification rules , 2002, Pattern Recognit..

[16]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[17]  Richard E. Haskell Neuro-Fuzzy Classification and Regression Trees , 1993 .

[18]  Robert C. Holte,et al.  Very Simple Classification Rules Perform Well on Most Commonly Used Datasets , 1993, Machine Learning.

[19]  Hisao Ishibuchi,et al.  Three-objective genetics-based machine learning for linguistic rule extraction , 2001, Inf. Sci..

[20]  Hisao Ishibuchi,et al.  Linguistic Rule Extraction by Genetics-Based Machine Learning , 2000, GECCO.

[21]  Ivan Bratko,et al.  Machine Learning and Data Mining; Methods and Applications , 1998 .

[22]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[23]  C. Zheng,et al.  ; 0 ; , 1951 .

[24]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[25]  Jonatan Gómez,et al.  Self Adaptation of Operator Rates in Evolutionary Algorithms , 2004, GECCO.

[26]  Stephen F. Smith,et al.  A learning system based on genetic adaptive algorithms , 1980 .