CPHD Filter Birth Modeling Using the Probabilistic Admissible Region

Sparse observations make single-point track initialization difficult in some multitarget tracking scenarios, including space-object tracking. A probabilistic admissible region approach combines physics- and scenario-based constraints in unobservable directions to reduce ambiguity in the initial state and allows for a birth model consistent with the derivation assumptions in the cardinalized probability hypothesis density filter. The proposed filter enables tracking of simulated space objects via optical or radar observations and establishes custody of newly observed targets when given sparse observations.

[1]  Kyle J. DeMars,et al.  Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems , 2013 .

[2]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[3]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[4]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  M. K. Cheng,et al.  The GGM03 Mean Earth Gravity Model from GRACE , 2007 .

[6]  Johnny L. Worthy,et al.  Incorporating Uncertainty in Admissible Regions for Uncorrelated Detections , 2014 .

[7]  Jared M. Maruskin,et al.  Correlation of Optical Observations of Objects in Earth Orbit , 2009 .

[8]  Salvatore Alfanol,et al.  A Numerical Implementation of Spherical Object Collision Probability , 2005 .

[9]  Thomas Schildknecht,et al.  Object image linking of earth orbiting objects in the presence of cosmics , 2012 .

[10]  Daniel J. Scheeres,et al.  Association of optical tracklets from a geosynchronous belt survey via the direct Bayesian admissible region approach , 2014 .

[11]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[12]  Ba-Ngu Vo,et al.  Challenges of multi-target tracking for space situational awareness , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[13]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[14]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[15]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[16]  Kyle J. DeMars,et al.  Relative multiple space object tracking using intensity filters , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[17]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[19]  Ba-Ngu Vo,et al.  A Partially Uniform Target Birth Model for Gaussian Mixture PHD/CPHD Filtering , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Ba-Ngu Vo,et al.  AAS 15-413 A LABELED MULTI-BERNOULLI FILTER FOR SPACE OBJECT TRACKING , 2015 .

[21]  Kyle J. DeMars,et al.  Probabilistic Initial Orbit Determination Using Gaussian Mixture Models , 2013 .

[22]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[23]  Jean C. Walrand,et al.  Effective bandwidths: Call admission, traffic policing and filtering for ATM networks , 1995, Queueing Syst. Theory Appl..

[24]  Andrea Milani,et al.  From Astrometry to Celestial Mechanics: Orbit Determination with Very Short Arcs , 2005 .

[25]  Ronald P. S. Mahler,et al.  Multitarget Markov motion models , 1999, Defense, Security, and Sensing.

[26]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[27]  Brandon A. Jones Modeling birth in a space-object CPHD filter using the probabilistic admissible region , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[28]  Daniel J. Scheeres,et al.  Correlation of Optical Observations of Earth-Orbiting Objects and Initial Orbit Determination , 2012 .

[29]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.