New Analytical Tools for Evaluation of Spherical Aberration in Optical Microscopy

[1]  Colin J. R. Sheppard,et al.  Scanning optical microscopy , 2020, Advances in Imaging and Electron Physics.

[2]  R Martínez-Cuenca,et al.  Reduction of spherical-aberration impact in microscopy by wavefront coding. , 2009, Optics express.

[3]  G. Saavedra,et al.  Chapter 1 The Resolution Challenge in 3D Optical Microscopy , 2009 .

[4]  R. Golestanian,et al.  Measuring lateral efficiency of optical traps: The effect of tube length , 2006 .

[5]  Sjoerd Stallinga Finite conjugate spherical aberration compensation in high numerical-aperture optical disc readout. , 2005, Applied optics.

[6]  T Wilson,et al.  Simple optimization procedure for objective lens correction collar setting , 2005, Journal of microscopy.

[7]  S. Stallinga Compact description of substrate-related aberrations in high numerical-aperture optical disk readout. , 2005, Applied optics.

[8]  H. Furukawa,et al.  The point spread function of optical microscopes imaging through stratified media. , 2003, Optics express.

[9]  T Wilson,et al.  Strategies for the compensation of specimen‐induced spherical aberration in confocal microscopy of skin , 2000, Journal of microscopy.

[10]  Shirong Luo,et al.  Beam propagation factor of hard-edge diffracted cosh-Gaussian beams , 2000 .

[11]  M. Gu,et al.  Advanced Optical Imaging Theory , 1999 .

[12]  T. Wilson,et al.  Aberration correction for confocal imaging in refractive‐index‐mismatched media , 1998 .

[13]  P. C. Ke,et al.  Characterization of trapping force in the presence of spherical aberration , 1998 .

[14]  M Gu,et al.  Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer. , 1998, Applied optics.

[15]  Peter Varga,et al.  The role of specimen‐induced spherical aberration in confocal microscopy , 1997 .

[16]  J. Braat Influence of substrate thickness on optical disk readout. , 1997, Applied optics.

[17]  P. Varga,et al.  Electromagnetic diffraction of light focused through a stratified medium. , 1997, Applied optics.

[18]  C. J. R. Sheppard,et al.  Aberrations in high aperture optical systems , 1997 .

[19]  Peter Varga,et al.  Analytical solution of the diffraction integrals and interpretation of wave-front distortion when light is focused through a planar interface between materials of mismatched refractive indices , 1995 .

[20]  Peter Török,et al.  Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation , 1995 .

[21]  R. Martínez-Herrero,et al.  Parametric characterization of coherent, lowest-order Gaussian beams propagating through hard-edged apertures. , 1995, Optics letters.

[22]  S. Wang,et al.  New beam propagation through axisymmetric optical systems , 1995 .

[23]  R. Martínez-Herrero,et al.  Second-order spatial characterization of hard-edge diffracted beams. , 1993, Optics letters.

[24]  Colin J. R. Sheppard,et al.  Imaging by a high aperture optical system , 1993 .

[25]  S. Hell,et al.  Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index , 1993 .

[26]  C. J. R. Sheppard,et al.  Effects of aberrating layers and tube length on con focal imaging properties , 1991 .

[27]  C. Sheppard,et al.  Aberrations in high aperture conventional and confocal imaging systems. , 1988, Applied optics.

[28]  Tony Wilson,et al.  Three‐dimensional imaging in confocal imaging systems with finite sized detectors , 1988 .

[29]  Thomas L. Lentz,et al.  Advances in Optical and Electron Microscopy , 1970, The Yale Journal of Biology and Medicine.