The Structure of Infinite Periodic and Chaotic Hub Cascades in Phase Diagrams of Simple Autonomous Flows

This manuscript reports numerical investigations about the relative abundance and structure of chaotic phases in autonomous dissipative flows, i.e. in continuous-time dynamical systems described by sets of ordinary differential equations. In the first half, we consider flows containing "periodicity hubs", which are remarkable points responsible for organizing the dynamics regularly over wide parameter regions around them. We describe isolated hubs found in two forms of Rossler's equations and in Chua's circuit, as well as surprising infinite hub cascades that we found in a polynomial chemical flow with a cubic nonlinearity. Hub cascades converge orderly to accumulation points lying on specific parameter paths. In sharp contrast with familiar phenomena associated with unstable orbits, hubs and infinite hub cascades always involve stable periodic and chaotic orbits which are, therefore, directly measurable in experiments. In the last part, we consider flows having no hubs but unusual phase diagrams: a cubic...

[1]  Soumitro Banerjee,et al.  Robust Chaos , 1998, chao-dyn/9803001.

[2]  J. Gallas,et al.  Accumulation boundaries: codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Celso Grebogi,et al.  Bifurcation rigidity , 1999 .

[4]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[5]  Cristian Bonatto,et al.  Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser. , 2005, Physical review letters.

[6]  M. K. Ali,et al.  Robust chaos in smooth unimodal maps. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  I. Kanter,et al.  Robust chaos generation by a perceptron , 2000 .

[8]  P. Glendinning,et al.  Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Russian Federation,et al.  On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .

[10]  Pierre Gaspard,et al.  What can we learn from homoclinic orbits in chaotic dynamics? , 1983 .

[11]  O. Rössler CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .

[12]  Tapan Mitra,et al.  Robust chaos in dynamic optimization models , 1994 .

[13]  V. V. Bykov,et al.  The bifurcations of separatrix contours and chaos , 1993 .

[14]  Fractal Transformation of the One-Dimensional Chaos Produced by Logarithmic Map , 1991 .

[15]  Colin Sparrow,et al.  T-points: A codimension two heteroclinic bifurcation , 1986 .

[16]  O. Rössler An equation for continuous chaos , 1976 .

[17]  Julien Clinton Sprott,et al.  On the robustness of chaos in dynamical systems: Theories and applications , 2008 .

[18]  J. Gallas,et al.  Accumulation horizons and period adding in optically injected semiconductor lasers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Marco Monti,et al.  Characterization of the Rössler System in Parameter Space , 2007, Int. J. Bifurc. Chaos.

[20]  Mario G. Cosenza,et al.  Critical behavior of the Lyapunov exponent in type-III intermittency , 2008 .

[21]  M. K. Ali,et al.  Robust chaos in neural networks , 2000 .

[22]  Yoshisuke Ueda,et al.  Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Edward N. Lorenz,et al.  Compound windows of the Hénon-map , 2008 .

[24]  Donald R. Franceschetti Biographical encyclopedia of mathematicians , 1999 .

[25]  Bifurcations of the Complex Dynamical System Zn+1=ln (Zn)+C , 1993 .

[26]  J. M. Ottino,et al.  Engineering complex systems , 2004, Nature.

[27]  Jason A. C. Gallas,et al.  ESTRUCTURA DEL ESPACIO DE PARÁMETROS PARA LAS ECUACIONES DEL CIRCUITO DE CHUA , 2008 .

[28]  J. Gallas,et al.  Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.

[29]  C. DaCamara,et al.  Multistability, phase diagrams, and intransitivity in the Lorenz-84 low-order atmospheric circulation model. , 2008, Chaos.

[30]  Richard J. Field,et al.  A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction , 1992, Nature.

[31]  Paulo C. Rech,et al.  Self-similar structures in a 2D parameter-space of an inductorless Chua's circuit , 2008 .

[32]  Mario G. Cosenza,et al.  Synchronization and Collective Behavior in Globally Coupled Logarithmic Maps , 1998 .

[33]  Jason A. C. Gallas,et al.  Lyapunov exponents for a Duffing oscillator , 1995 .

[34]  Knut H. Alfsen,et al.  Systematics of the Lorenz Model at σ = 10 , 1985 .

[35]  Raymond Kapral,et al.  Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .

[36]  J. G. Freire,et al.  Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov-Zhabotinsky reaction kinetics. , 2009, The Journal of chemical physics.

[37]  R. Kapral Analysis of flow hysteresis by a one-dimensional map , 1982 .

[38]  Yoshiro Kondo,et al.  Intermittent Chaos Generated by Logarithmic Map , 1991 .

[39]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[40]  Laurent Larger,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2005, Nature.

[41]  William Ralph Hunter,et al.  From falling bodies to radio waves: Classical physicists and their discoveries. , 1984 .

[42]  O. Rössler An equation for hyperchaos , 1979 .

[43]  Homoclinic phenomena in laser models , 1997 .

[44]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[45]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[46]  L. Shilnikov,et al.  NORMAL FORMS AND LORENZ ATTRACTORS , 1993 .

[47]  Luciano Camargo Martins,et al.  Multistability, Phase Diagrams and Statistical Properties of the Kicked Rotor: a Map with Many Coexisting attractors , 2008, Int. J. Bifurc. Chaos.

[48]  Jason A. C. Gallas,et al.  Dissecting shrimps: results for some one-dimensional physical models , 1994 .

[49]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[50]  Dmitry Turaev,et al.  Three-Dimensional HÉnon-like Maps and Wild Lorenz-like attractors , 2005, Int. J. Bifurc. Chaos.