Different Digitisations of Displaced Discs

AbstractThe digitisation ${\bf D}(R, (a, b))$ of a real disc $D(R, (a,b))$ having radius $R$ and centre $(a, b)$ consists of all integer points inside $D(R, (a,b))$, i.e., ${\bf D}(R, (a,b)) = D(R, (a, b)) \cap {\bf Z}^2.$ In this paper we show that there are $4 \pi R^2 +{\cal O}(R^{339/208}\cdot (\log R)^{18627/8320})$ different (up to translations) digitisations of discs having radius $R$. More formally, $\#\{{\bf D}(R, (a, b)) \;|\; \;a\; \makebox{and} \;b\; \makebox{vary through} \;[0,1)\} = 4 \pi R^2 +{\cal O}(R^{339/208}\cdot (\log R)^{18627/8320}).$ The result is of interest in the area of digital image processing because it describes how large the impact of the object position can be on its digitisation.

[1]  Miroslaw Pawlak,et al.  On the recovery of a function on a circular domain , 2002, IEEE Trans. Inf. Theory.

[2]  Reinhard Klette,et al.  Multigrid Convergence of Calculated Features in Image Analysis , 2000, Journal of Mathematical Imaging and Vision.

[3]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[4]  Antonio Córdoba,et al.  Lattice points , 1997 .

[5]  Jovisa D. Zunic,et al.  On the Number of Digital Discs , 2004, Journal of Mathematical Imaging and Vision.

[6]  Steve Fisk Separating Point Sets by Circles, and the Recognition of Digital Disks , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Miroslaw Pawlak,et al.  On the Accuracy of Zernike Moments for Image Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  M. Huxley Exponential sums and lattice points III , 2003 .

[9]  Natasa Sladoje,et al.  Efficiency of Characterizing Ellipses and Ellipsoids by Discrete Moments , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Michael Lindenbaum,et al.  A New Parameterization of Digital Straight Lines , 1991, IEEE Trans. Pattern Anal. Mach. Intell..