Heterozygosity–fitness correlations in blue tit nestlings (Cyanistis caeruleus) under contrasting rearing conditions

[1]  J. Doucet,et al.  Revealing hidden species diversity in closely related species using nuclear SNPs, SSRs and DNA sequences – a case study in the tree genus Milicia , 2016, BMC Evolutionary Biology.

[2]  P. David,et al.  inbreedR: an R package for the analysis of inbreeding based on genetic markers , 2016 .

[3]  J. Sanz,et al.  The strength of the association between heterozygosity and probability of interannual local recruitment increases with environmental harshness in blue tits , 2016, Ecology and evolution.

[4]  P. Phillips,et al.  Intrinsic differences between males and females determine sex-specific consequences of inbreeding , 2016, BMC Evolutionary Biology.

[5]  C. Labandeira,et al.  New data from the Middle Jurassic of China shed light on the phylogeny and origin of the proboscis in the Mesopsychidae (Insecta: Mecoptera) , 2016, BMC Evolutionary Biology.

[6]  K. Wojczulanis-Jakubas,et al.  Local Heterozygosity Effects on Nestling Growth and Condition in the Great Cormorant , 2015, Evolutionary Biology.

[7]  J. Sanz,et al.  Heterozygosity at a single locus explains a large proportion of variation in two fitness‐related traits in great tits: a general or a local effect? , 2014, Journal of evolutionary biology.

[8]  A. Agrawal,et al.  Variation in the strength of inbreeding depression across environments: Effects of stress and density dependence , 2014, Evolution; international journal of organic evolution.

[9]  J. Forcada,et al.  Climate change selects for heterozygosity in a declining fur seal population , 2014, Nature.

[10]  H. Richner,et al.  Heterozygosity is linked to the costs of immunity in nestling great tits (Parus major) , 2013, Ecology and evolution.

[11]  P. David,et al.  Estimating genome-wide heterozygosity: effects of demographic history and marker type , 2013, Heredity.

[12]  B. Kempenaers,et al.  Heterozygosity–fitness correlations in zebra finches: microsatellite markers can be better than their reputation , 2012, Molecular ecology.

[13]  H. Richner,et al.  Parasites as mediators of heterozygosity–fitness correlations in the Great Tit (Parus major) , 2012, Journal of evolutionary biology.

[14]  M. Dickens,et al.  Sexual dimorphism and offspring growth: smaller female Blue Tit nestlings develop relatively larger gapes , 2012, Journal of Ornithology.

[15]  B. Kempenaers,et al.  CORRELATIONS BETWEEN HETEROZYGOSITY AND REPRODUCTIVE SUCCESS IN THE BLUE TIT (CYANISTES CAERULEUS): AN ANALYSIS OF INBREEDING AND SINGLE LOCUS EFFECTS , 2011, Evolution; international journal of organic evolution.

[16]  B. Kempenaers,et al.  Heterozygosity and survival in blue tits (Cyanistes caeruleus): contrasting effects of presumably functional and neutral loci , 2011, Molecular ecology.

[17]  D. H. Reed,et al.  INBREEDING DEPRESSION INCREASES WITH ENVIRONMENTAL STRESS: AN EXPERIMENTAL STUDY AND META‐ANALYSIS , 2011, Evolution; international journal of organic evolution.

[18]  D. Coltman,et al.  Sex‐differential effects of inbreeding on overwinter survival, birth date and mass of bighorn lambs , 2011, Journal of evolutionary biology.

[19]  J. Merilä,et al.  Rhh: an R extension for estimating multilocus heterozygosity and heterozygosity–heterozygosity correlation , 2010, Molecular ecology resources.

[20]  L. Gustafsson,et al.  Sex‐specific heritability of cell‐mediated immune response in the blue tit nestlings (Cyanistes caeruleus) , 2010, Journal of evolutionary biology.

[21]  P. David,et al.  HETEROZYGOSITY‐FITNESS CORRELATIONS: A TIME FOR REAPPRAISAL , 2010, Evolution; international journal of organic evolution.

[22]  B. Kempenaers,et al.  A genome‐wide set of 106 microsatellite markers for the blue tit (Cyanistes caeruleus) , 2010, Molecular ecology resources.

[23]  J. Lifjeld,et al.  Cell‐mediated immunity and multi‐locus heterozygosity in bluethroat nestlings , 2009, Journal of evolutionary biology.

[24]  J. R. Chapman,et al.  A quantitative review of heterozygosity–fitness correlations in animal populations , 2009, Molecular ecology.

[25]  Martijn van de Pol,et al.  A simple method for distinguishing within- versus between-subject effects using mixed models , 2009, Animal Behaviour.

[26]  B. Hansson,et al.  Heterozygosity-fitness correlations within inbreeding classes: local or genome-wide effects? , 2008, Conservation Genetics.

[27]  S. Kalinowski,et al.  Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment , 2007, Molecular ecology.

[28]  J. Aparicio,et al.  Can a simple algebraic analysis predict markers-genome heterozygosity correlations? , 2006, The Journal of heredity.

[29]  D. Hasselquist,et al.  Inbreeding effects on immune response in free-living song sparrows (Melospiza melodia) , 2006, Proceedings of the Royal Society B: Biological Sciences.

[30]  W. Hochachka,et al.  Interactive effects of environmental stress and inbreeding on reproductive traits in a wild bird population. , 2006, The Journal of animal ecology.

[31]  J. Aparicio,et al.  What should we weigh to estimate heterozygosity, alleles or loci? , 2006, Molecular ecology.

[32]  L. Gustafsson,et al.  Genetic and environmental variation in immune response of collared flycatcher nestlings , 2006, Journal of evolutionary biology.

[33]  D. Allainé,et al.  Genetic diversity-fitness correlation revealed by microsatellite analyses in European alpine marmots (Marmota marmota) , 2006, Conservation Genetics.

[34]  F. Balloux,et al.  Life history correlates of inbreeding depression in mandrills (Mandrillus sphinx) , 2005, Molecular ecology.

[35]  M. Cichoń,et al.  Cell‐mediated immunity predicts the probability of local recruitment in nestling blue tits , 2005, Journal of evolutionary biology.

[36]  P. Brakefield,et al.  Inbreeding uncovers fundamental differences in the genetic load affecting male and female fertility in a butterfly , 2005, Proceedings of the Royal Society B: Biological Sciences.

[37]  D. Lesbarrères,et al.  Environmental and population dependency of genetic variability‐fitness correlations in Rana temporaria , 2004, Molecular ecology.

[38]  F. Balloux,et al.  Does heterozygosity estimate inbreeding in real populations? , 2004, Molecular ecology.

[39]  B. Kempenaers,et al.  Females increase offspring heterozygosity and fitness through extra-pair matings , 2003, Nature.

[40]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[41]  J. Slate,et al.  MICROSATELLITE MEASURES OF INBREEDING: A META‐ANALYSIS , 2003, Evolution; international journal of organic evolution.

[42]  B. Hansson,et al.  On the correlation between heterozygosity and fitness in natural populations , 2002, Molecular ecology.

[43]  S. Bensch,et al.  Microsatellite diversity predicts recruitment of sibling great reed warblers , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  S. Rossiter,et al.  Outbreeding increases offspring survival in wild greater horseshoe bats (Rhinolophus ferrumequinum) , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  T. Birkhead,et al.  Nestling diet, secondary sexual traits and fitness in the zebra finch , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[46]  R. Griffiths,et al.  A DNA test to sex most birds , 1998, Molecular ecology.

[47]  P. David Heterozygosity–fitness correlations: new perspectives on old problems , 1998, Heredity.

[48]  T. C. Marshall,et al.  Microsatellites reveal heterosis in red deer , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  G. Parker,et al.  The Evolution of Sibling Rivalry , 1998 .

[50]  A. Møller,et al.  Immunocompetence of nestling barn swallows in relation to brood size and parental effort , 1997 .

[51]  J. Goudet FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics , 1995 .

[52]  L. Gustafsson,et al.  BREEDING DISPERSAL IN THE COLLARED FLYCATCHER (FICEDULA ALBICOLLIS): POSSIBLE CAUSES AND REPRODUCTIVE CONSEQUENCES , 1989 .

[53]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[54]  H. Kodama,et al.  Suppression of phytohemagglutinin skin response in thymectomized chickens. , 1978, Poultry science.