Peirce algebras

We present a two-sorted algebra, called aPeirce algebra, of relations and sets interacting with each other. In a Peirce algebra, sets can combine with each other as in a Boolean algebra, relations can combine with each other as in a relation algebra, and in addition we have both a set-forming operator on relations (the Peirce product of Boolean modules) and a relation-forming operator on sets (a cylindrification operation). Two applications of Peirce algebras are given. The first points out that Peirce algebras provide a natural algebraic framework for modelling certain programming constructs. The second shows that the so-calledterminological logics arising in knowledge representation have evolved a semantics best described as a calculus of relations interacting with sets.

[1]  MICHAEL BÖTTNER,et al.  STATE TRANSITION SEMANTICS , 1992 .

[2]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[3]  Gunther Schmidt,et al.  Relations and Graphs , 1993, EATCS Monographs on Theoretical Computer Science.

[4]  C. Brink,et al.  Subsumption computed algebraically , 1992 .

[5]  Willem P. de Roever,et al.  A Calculus for Recursive Program Schemes , 1972, ICALP.

[6]  C. A. R. Hoare,et al.  Prespecification in Data Refinement , 1987, Inf. Process. Lett..

[7]  Dexter Kozen,et al.  On the Duality of Dynamic Algebras and Kripke Models , 1979, Logic of Programs.

[8]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[9]  James G. Schmolze,et al.  The KL-ONE family , 1992 .

[10]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[11]  James G. Schmolze,et al.  The NIKL experience 1 , 1991, Comput. Intell..

[12]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[13]  Yde Venema,et al.  Many-dimensional Modal Logic , 1991 .

[14]  PETER F. PATEL-SCHNEIDER,et al.  A hybrid, decidable, logic‐based knowledge representation system 1 , 1987, Comput. Intell..

[15]  Dexter Kozen,et al.  A Representation Theorem for Models of *-Free PDL , 1980, ICALP.

[16]  Peter F. Patel-Schneider,et al.  A Four-Valued Semantics for Terminological Logics , 1989, Artif. Intell..

[17]  Ronald J. Brachman,et al.  An Overview of the KL-ONE Knowledge Representation System , 1985, Cogn. Sci..

[18]  Werner Nutt,et al.  The Complexity of Concept Languages , 1997, KR.

[19]  Alfred Tarski,et al.  Distributive and Modular Laws in the Arithmetic of Relation Algebras , 1953 .

[20]  P. Patel-Schneider Decidable, logic-based knowledge representation , 1987 .

[21]  Michael Böttner Variable-free semantics for anaphora , 1992, J. Philos. Log..

[22]  Roger D. Maddux,et al.  A sequent calculus for relation algebras , 1983, Ann. Pure Appl. Log..

[23]  Patrick Suppes,et al.  Direct Inference in English , 1981 .

[24]  B. Jónsson Varieties of relation algebras , 1982 .

[25]  Bernhard Beckert,et al.  Dynamic Logic , 2007, The KeY Approach.

[26]  Rohit Parikh Propositional Dynamic Logics of Programs: a Survey , 1979, Logic of Programs.

[27]  Patrick Suppes Variable-Free Semantics for Negations with Prosodic Variation , 1979 .

[28]  Matthew Hennessy A Proof System for the First-Order Relational Calculus , 1980, J. Comput. Syst. Sci..

[29]  Vaughan R. Pratt,et al.  Dynamic algebras as a well-behaved fragment of relation algebras , 1988, Algebraic Logic and Universal Algebra in Computer Science.

[30]  Renate A. Schmidt,et al.  Terminological Representation, Natural Language & Relation Algebra , 1992, GWAI.

[31]  Bernhard Hollunder,et al.  Subsumption Algorithms for Concept Description Languages , 1990, ECAI.

[32]  W. W. Wadge,et al.  A Complete Natural Deduction System for the Relational Calculus , 1975 .

[33]  Ewa Orlowska Relational proof systems for some AI logics , 1991, FAIR.

[34]  C. A. R. Hoare,et al.  The Weakest Prespecification , 1987, Information Processing Letters.