The Induction Motor Parameter Estimation Using Genetic Algorithm

This paper presents a method to estimate electrical parameters in a three-phase induction motor (MIT) equivalent circuit, using genetic algorithm (GA). This method is applied in a MATLAB® Simulink environment. The methodology consist in minimize objective function to represent the estimated current error with GA. The stator current versus slip curve is a simulation result and it will be used to estimate electrical parameters of equivalent circuit. In this work two different theory MIT model are considered Chapman[1] and Wildi [2]. The goal is define the better current versus slip estimate curve for each model and to determine which one has the best motor simulate representation.

[1]  Francesco Alonge,et al.  Parameter identification of induction motor model using genetic algorithms , 1998 .

[2]  Stephen J. Chapman,et al.  Electric Machinery Fundamentals , 1991 .

[3]  Theodore Wildi,et al.  Electrical Machines, Drives, and Power Systems , 1990 .

[4]  B. Abdelhadi,et al.  Application of genetic algorithm with a novel adaptive scheme for the identification of induction machine parameters , 2005, IEEE Transactions on Energy Conversion.

[5]  Chris Gerada,et al.  Identification of Induction Machine Electrical Parameters Using Genetic Algorithms Optimization , 2008, 2008 IEEE Industry Applications Society Annual Meeting.

[6]  V. Tipsuwanporn,et al.  Speed control of three-phase induction motor online tuning by genetic algorithm , 2003, The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003..

[7]  M. Cunkas,et al.  Multiobjective genetic estimation to induction motor parameters , 2007, 2007 International Aegean Conference on Electrical Machines and Power Electronics.

[8]  R. R. Bishop,et al.  Identifying induction machine parameters using a genetic optimization algorithm , 1990, IEEE Proceedings on Southeastcon.

[9]  M. A. Arjona,et al.  Parameter Estimation of a Synchronous Generator Using a Sine Cardinal Perturbation and Mixed Stochastic–Deterministic Algorithms , 2011, IEEE Transactions on Industrial Electronics.

[10]  E. Davies,et al.  Electrical machines , 2006, 2006 Eleventh International Middle East Power Systems Conference.

[11]  C.W. Brice,et al.  Estimation of induction motor parameters by a genetic algorithm , 2003, Conference Record of the 2003 Annual Pulp and Paper Industry Technical Conference, 2003..