Enhancing gravitational-wave science with machine learning

Machine learning has emerged as a popular and powerful approach for solving problems in astrophysics. We review applications of machine learning techniques for the analysis of ground-based gravitational-wave detector data. Examples include techniques for improving the sensitivity of Advanced LIGO and Advanced Virgo gravitational-wave searches, methods for fast measurements of the astrophysical parameters of gravitational-wave sources, and algorithms for reduction and characterization of non-astrophysical detector noise. These applications demonstrate how machine learning techniques may be harnessed to enhance the science that is possible with current and future gravitational-wave detectors.

[1]  R. Essick,et al.  Detectability of dynamical tidal effects and the detection of gravitational-wave transients with LIGO , 2017 .

[2]  Michael Pürrer,et al.  Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass-ratios and spins , 2016 .

[3]  Andrew L. Miller,et al.  Method to search for long duration gravitational wave transients from isolated neutron stars using the generalized frequency-Hough transform , 2018, Physical Review D.

[4]  Heinz-Bernd Eggenstein,et al.  An adaptive clustering procedure for continuous gravitational wave searches , 2017, 1707.02676.

[5]  Luciano Rezzolla,et al.  THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS , 2016, 1605.01938.

[6]  Thibault Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000 .

[7]  Cody Messick,et al.  Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.

[8]  Philip Graff,et al.  Use of gravitational waves to probe the formation channels of compact binaries , 2015, 1503.04307.

[9]  Antonio Marquina,et al.  Denoising of gravitational wave signals via dictionary learning algorithms , 2016, 1612.01305.

[10]  N. S. Philip,et al.  Transient Classification in LIGO data using Difference Boosting Neural Network , 2016, 1609.07259.

[11]  Joan M. Centrella,et al.  Black-hole binaries, gravitational waves, and numerical relativity , 2010, 1010.5260.

[12]  H. Pletsch,et al.  Parameter-space metric of semicoherent searches for continuous gravitational waves , 2010, 1005.0395.

[13]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[14]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[15]  Carlos O. Lousto,et al.  Remnant of binary black-hole mergers: New simulations and peak luminosity studies , 2016, 1610.09713.

[16]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[17]  D. Talukder,et al.  Multivariate classification with random forests for gravitational wave searches of black hole binary coalescence , 2014, 1412.6479.

[18]  M. S. Shahriar,et al.  Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model , 2019, Physical Review D.

[19]  Michael Boyle,et al.  Effective-one-body model for black-hole binaries with generic mass ratios and spins , 2013, Physical Review D.

[20]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  S. Suvorova,et al.  Hidden Markov model tracking of continuous gravitational waves from a binary neutron star with wandering spin. II. Binary orbital phase tracking , 2017, 1710.07092.

[22]  G. Meadors,et al.  TwoSpect: tuning up to search for gravitational waves from Scorpius X-1 , 2015 .

[23]  Scott E. Field,et al.  Surrogate model of hybridized numerical relativity binary black hole waveforms , 2018, Physical Review D.

[24]  Farhan Feroz,et al.  BAMBI: blind accelerated multimodal Bayesian inference , 2011, 1110.2997.

[25]  Razvan Pascanu,et al.  How to Construct Deep Recurrent Neural Networks , 2013, ICLR.

[26]  A. Katsaggelos,et al.  Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science , 2016, Classical and quantum gravity.

[27]  S. Márka,et al.  Prospects of gravitational wave data mining and exploration via evolutionary computing , 2006 .

[28]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[29]  Yenson Lau,et al.  Efficient gravitational-wave glitch identification from environmental data through machine learning , 2020 .

[30]  Elena Cuoco,et al.  Core-Collapse supernova gravitational-wave search and deep learning classification , 2020, Mach. Learn. Sci. Technol..

[31]  E. Katsavounidis,et al.  Multiresolution techniques for the detection of gravitational-wave bursts , 2004, gr-qc/0412119.

[32]  Bruce Allen,et al.  Exploiting large-scale correlations to detect continuous gravitational waves. , 2009, Physical review letters.

[33]  J. R. Palamos,et al.  Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO , 2018, 1801.07204.

[34]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[35]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[36]  Michał Bejger,et al.  Convolutional neural network classifier for the output of the time-domain F-statistic all-sky search for continuous gravitational waves. , 2019 .

[37]  Richard O'Shaughnessy,et al.  Rapid and accurate parameter inference for coalescing, precessing compact binaries , 2018, 1805.10457.

[38]  C. Messenger,et al.  Deep-learning continuous gravitational waves , 2019, Physical Review D.

[39]  Michael Boyle,et al.  The SXS collaboration catalog of binary black hole simulations , 2019, Classical and Quantum Gravity.

[40]  Shirley Ho,et al.  Gravitational-wave population inference with deep flow-based generative network , 2020, Physical Review D.

[41]  Michael Boyle,et al.  Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms , 2012, 1202.0790.

[42]  G. Mitselmakher,et al.  A coherent method for detection of gravitational wave bursts , 2004 .

[43]  Ilya Mandel,et al.  Model-independent inference on compact-binary observations , 2016, 1608.08223.

[44]  D. P. Acharjya,et al.  An Information Retrieval and Recommendation System for Astronomical Observatories , 2017, 1710.05350.

[45]  Luigi Troiano,et al.  Neural Network Aided Glitch-Burst Discrimination and Glitch Classification , 2013 .

[46]  Kei Kotake,et al.  Anisotropic emission of neutrino and gravitational-wave signals from rapidly rotating core-collapse supernovae , 2017, 1711.01905.

[47]  S. Suvorova,et al.  Hidden Markov model tracking of continuous gravitational waves from young supernova remnants , 2017, 1710.00460.

[48]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[49]  Aggelos K. Katsaggelos,et al.  Machine learning for Gravity Spy: Glitch classification and dataset , 2018, Inf. Sci..

[50]  Jan S. Hesthaven,et al.  Fast prediction and evaluation of gravitational waveforms using surrogate models , 2013, ArXiv.

[51]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[52]  Hongyu Shen,et al.  Deep Learning at Scale for Gravitational Wave Parameter Estimation of Binary Black Hole Mergers , 2019, ArXiv.

[53]  Graham Woan,et al.  Generalized application of the Viterbi algorithm to searches for continuous gravitational-wave signals , 2019, Physical Review D.

[54]  Elena Cuoco,et al.  Image-based deep learning for classification of noise transients in gravitational wave detectors , 2018, ArXiv.

[55]  Frank Ohme,et al.  Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.

[56]  Andrew Melatos,et al.  Application of hidden Markov model tracking to the search for long-duration transient gravitational waves from the remnant of the binary neutron star merger GW170817 , 2018, Physical Review D.

[57]  Tomoki Isogai,et al.  Used percentage veto for LIGO and virgo binary inspiral searches , 2010 .

[58]  Frank Ohme,et al.  Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects , 2018, Physical Review D.

[59]  J. Powell,et al.  Gravitational wave emission from 3D explosion models of core-collapse supernovae with low and normal explosion energies , 2018, Monthly Notices of the Royal Astronomical Society.

[60]  Advanced LIGO , 2014, 1411.4547.

[61]  Andrew G. Lyne,et al.  First search for long-duration transient gravitational waves after glitches in the Vela and Crab pulsars , 2019, Physical Review D.

[62]  Paola Leaci,et al.  Methods to filter out spurious disturbances in continuous-wave searches from gravitational-wave detectors , 2015 .

[63]  E. Huerta,et al.  Gravitational wave denoising of binary black hole mergers with deep learning , 2019, Physics Letters B.

[64]  D. Wysocki,et al.  Inferences about the distribution, merger rate, and evolutionary processes of compact binaries from gravitational wave observations , 2017, 1712.02643.

[65]  Y. Wang,et al.  All-sky search for short gravitational-wave bursts in the first Advanced LIGO run , 2016, 1611.02972.

[66]  P. K. Panda,et al.  GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M ⊙ , 2020, The Astrophysical Journal.

[67]  Antonio Marquina,et al.  Total-variation-based methods for gravitational wave denoising , 2014, 1409.7888.

[68]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1999 .

[69]  François Hébert,et al.  High-Accuracy Mass, Spin, and Recoil Predictions of Generic Black-Hole Merger Remnants. , 2018, Physical review letters.

[70]  P. K. Panda,et al.  An Optically Targeted Search for Gravitational Waves emitted by Core-Collapse Supernovae during the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. , 2019 .

[71]  Daniel George,et al.  Denoising Gravitational Waves with Enhanced Deep Recurrent Denoising Auto-encoders , 2017, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[72]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[73]  Luciano Rezzolla,et al.  Computing fast and reliable gravitational waveforms of binary neutron star merger remnants , 2018, Physical Review D.

[74]  M Hannam,et al.  Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.

[75]  Frank Ohme,et al.  First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries. , 2017, Physical review letters.

[76]  Alejandro Torres-Forn'e,et al.  Towards asteroseismology of core-collapse supernovae with gravitational wave observations – II. Inclusion of space–time perturbations , 2018, Monthly Notices of the Royal Astronomical Society.

[77]  P. Lasky,et al.  Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.

[78]  Frank Ohme,et al.  DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES , 2015, 1504.07802.

[79]  Thibault Damour,et al.  Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation , 2000 .

[80]  B. C. Barish,et al.  Summary of Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1 , 2019, 1905.05565.

[81]  Antonio Marquina,et al.  Total-variation methods for gravitational-wave denoising: Performance tests on Advanced LIGO data , 2018, Physical Review D.

[82]  Davide Gerosa,et al.  Are merging black holes born from stellar collapse or previous mergers , 2017, 1703.06223.

[83]  Hongyu Shen,et al.  Enabling real-time multi-messenger astrophysics discoveries with deep learning , 2019, Nature Reviews Physics.

[84]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[85]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[86]  Bernard F. Schutz,et al.  Hierarchical follow-up of subthreshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data , 2016, 1608.08928.

[87]  Eric Thrane,et al.  Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization , 2018, 1801.02699.

[88]  Cambridge,et al.  Gravitational waves from 3D core-collapse supernova models: The impact of moderate progenitor rotation , 2018, Monthly Notices of the Royal Astronomical Society.

[89]  Zachariah B. Etienne,et al.  Improving performance of SEOBNRv3 by ∼300× , 2018, Classical and Quantum Gravity.

[90]  Thibault Damour,et al.  New effective-one-body description of coalescing nonprecessing spinning black-hole binaries , 2014, 1406.6913.

[91]  Joshua R. Smith,et al.  A hierarchical method for vetoing noise transients in gravitational-wave detectors , 2011, 1107.2948.

[92]  Bruce Allen χ2 time-frequency discriminator for gravitational wave detection , 2005 .

[93]  Linqing Wen,et al.  Using deep learning to localize gravitational wave sources , 2019 .

[94]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[95]  Elena Cuoco,et al.  Wavelet-Based Classification of Transient Signals for Gravitational Wave Detectors , 2018, 2018 26th European Signal Processing Conference (EUSIPCO).

[96]  P. J. King,et al.  Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO , 2018, Physical Review D.

[97]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[98]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[99]  R. Lynch,et al.  Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data , 2015, 1505.01299.

[100]  N. Wiener Resume of Fundamental Mathematical Notions , 1949 .

[101]  Philip Graff,et al.  GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.

[102]  Patrick R Brady,et al.  Searching for periodic sources with LIGO. II. Hierarchical searches , 2000 .

[103]  Andrea Taracchini,et al.  Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity , 2016, 1607.05661.

[104]  Lindy Blackburn,et al.  Optimizing vetoes for gravitational-wave transient searches , 2013, 1303.7159.

[105]  Sinead Walsh,et al.  Optimizing the choice of analysis method for all-sky searches for continuous gravitational waves with Einstein@Home , 2019, Physical Review D.

[106]  J. Rollins,et al.  Multimessenger Astronomy with Low-Latency Searches for Transient Gravitational Waves , 2011 .

[107]  Jonathan R. Gair,et al.  Improving gravitational-wave parameter estimation using Gaussian process regression , 2015, 1509.04066.

[108]  Michael Purrer,et al.  Surrogate model for an aligned-spin effective-one-body waveform model of binary neutron star inspirals using Gaussian process regression , 2018, Physical Review D.

[109]  C. Palomba,et al.  New method to observe gravitational waves emitted by core collapse supernovae , 2018, Physical Review D.

[110]  Karan Jani,et al.  Georgia tech catalog of gravitational waveforms , 2016, 1605.03204.

[111]  Ilya Mandel,et al.  University of Birmingham Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves , 2017 .

[112]  Marco Cavaglia,et al.  Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach , 2020, Mach. Learn. Sci. Technol..

[113]  N Andersson,et al.  Probing neutron-star superfluidity with gravitational-wave data. , 2001, Physical review letters.

[114]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[115]  G. Mitselmakher,et al.  Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.

[116]  Antonio Marquina,et al.  Split Bregman Method for Gravitational Wave Denoising , 2015 .

[117]  Reinhard Prix,et al.  Deep-learning continuous gravitational waves: Multiple detectors and realistic noise , 2020, 2005.04140.

[118]  Reinhard Prix,et al.  Search for continuous gravitational waves: improving robustness versus instrumental artifacts , 2013, 1311.5738.

[119]  Reinhard Prix,et al.  Optimally setting up directed searches for continuous gravitational waves in Advanced LIGO O1 data , 2017, 1708.02173.

[120]  K. Riles,et al.  Recent searches for continuous gravitational waves , 2017, 1712.05897.

[121]  Thibault Damour,et al.  Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows , 2005 .

[122]  Michael Boyle,et al.  Catalog of 174 binary black hole simulations for gravitational wave astronomy. , 2013, Physical review letters.

[123]  Chris L. Fryer,et al.  Gravitational Waves from Gravitational Collapse , 2002, Living reviews in relativity.

[124]  M. S. Shahriar,et al.  Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run , 2019, Physical Review D.

[125]  Y. Arai,et al.  KAGRA: 2.5 generation interferometric gravitational wave detector , 2018, Nature Astronomy.

[126]  I. Fiori,et al.  Ground motion prediction at gravitational wave observatories using archival seismic data , 2018, Classical and Quantum Gravity.

[127]  Duncan A. Brown,et al.  PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals , 2018, Publications of the Astronomical Society of the Pacific.

[128]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[129]  Samaya Nissanke,et al.  Remnant baryon mass in neutron star-black hole mergers: Predictions for binary neutron star mimickers and rapidly spinning black holes , 2018, Physical Review D.

[130]  Daniel George,et al.  Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with Advanced LIGO Data , 2017, ArXiv.

[131]  Kai Staats,et al.  Finding the Origin of Noise Transients in LIGO Data with Machine Learning , 2018, Communications in Computational Physics.

[132]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[133]  Scott E. Field,et al.  Surrogate models for precessing binary black hole simulations with unequal masses , 2019, Physical Review Research.

[134]  Tjonnie G. F. Li,et al.  Ranking candidate signals with machine learning in low-latency searches for gravitational waves from compact binary mergers , 2020 .

[135]  Salvatore Vitale,et al.  Machine-learning non-stationary noise out of gravitational wave detectors , 2019, ArXiv.

[136]  B. Mours,et al.  Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era , 2015, 1512.02864.

[137]  John J. Oh,et al.  Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data , 2013, 1303.6984.

[138]  A. Rest,et al.  An Empirical Study of Contamination in Deep, Rapid, and Wide-field Optical Follow-up of Gravitational Wave Events , 2017, 1710.02144.

[139]  Bruce Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1999 .

[140]  Christian Reisswig,et al.  Energetics and phasing of nonprecessing spinning coalescing black hole binaries , 2015, 1506.08457.

[141]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[142]  H. Pletsch,et al.  Parameter-space correlations of the optimal statistic for continuous gravitational-wave detection , 2008, 0807.1324.

[143]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[144]  J. Powell,et al.  Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data , 2016, 1609.06262.

[145]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[146]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[147]  Michael Boyle,et al.  Numerical relativity waveform surrogate model for generically precessing binary black hole mergers , 2017, 1705.07089.

[148]  Nelson Christensen,et al.  Stochastic gravitational wave backgrounds , 2018, Reports on progress in physics. Physical Society.

[149]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[150]  Daniel Williams,et al.  Precessing numerical relativity waveform surrogate model for binary black holes: A Gaussian process regression approach , 2019 .

[151]  Ilya Mandel,et al.  Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments , 2017, 1703.06873.

[152]  Scott E. Field,et al.  Fast and accurate prediction of numerical relativity waveforms from binary black hole mergers using surrogate models , 2015, Physical review letters.

[153]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.

[154]  Chad R. Galley,et al.  Reduced-Order Modeling with Artificial Neurons for Gravitational-Wave Inference. , 2019, Physical review letters.

[155]  Brookhaven National Laboratory,et al.  Accelerating parameter inference with graphics processing units , 2019, Physical Review D.

[156]  Parameswaran Ajith,et al.  Accurate inspiral-merger-ringdown gravitational waveforms for nonspinning black-hole binaries including the effect of subdominant modes , 2017, 1708.03501.

[157]  Scott E. Field,et al.  A Surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers , 2017, 1701.00550.

[158]  Michele Vallisneri,et al.  Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference. , 2020, Physical review letters.

[159]  J. Gair,et al.  Novel method for incorporating model uncertainties into gravitational wave parameter estimates. , 2014, Physical review letters.

[160]  Ian Hawke,et al.  On the gravitational radiation from the collapse of neutron stars to rotating black holes , 2007 .

[161]  Reinhard Prix,et al.  Postprocessing methods used in the search for continuous gravitational-wave signals from the galactic center , 2014, 1410.5997.

[162]  Sascha Husa,et al.  Calibration of moving puncture simulations , 2008 .

[163]  M. S. Shahriar,et al.  Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO ’ s Second Observing Run , 2022 .

[164]  Francois Foucart,et al.  Black-hole-neutron-star mergers: Disk mass predictions , 2012, 1207.6304.

[165]  Michael Purrer,et al.  Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy , 2016, 1611.00332.

[166]  How effective is machine learning to detect long transient gravitational waves from neutron stars in a real search? , 2019, Physical Review D.

[167]  R. Prix,et al.  Implementing a semicoherent search for continuous gravitational waves using optimally constructed template banks , 2018, Physical Review D.

[168]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[169]  Stephen R. Green,et al.  Gravitational-wave parameter estimation with autoregressive neural network flows , 2020, Physical Review D.

[170]  D. Radice,et al.  Characterizing the Gravitational Wave Signal from Core-collapse Supernovae , 2018, The Astrophysical Journal.

[171]  Hunter Gabbard,et al.  Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy. , 2017, Physical review letters.

[172]  Alan Garner,et al.  Automated Transient Detection with Shapelet Analysis in Image-subtracted Data , 2019, The Astronomical Journal.

[173]  Michael Pürrer,et al.  Frequency-domain reduced order models for gravitational waves from aligned-spin compact binaries , 2014 .

[174]  Cody Messick,et al.  A self-consistent method to estimate the rate of compact binary coalescences with a Poisson mixture model , 2019, Classical and Quantum Gravity.

[175]  P. Ajith,et al.  Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.

[176]  A. Vecchio,et al.  Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.

[177]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.

[178]  Peter Tiňo,et al.  Unmodelled clustering methods for gravitational wave populations of compact binary mergers , 2019, Monthly Notices of the Royal Astronomical Society.

[179]  Alexander H. Nitz,et al.  Rapid detection of gravitational waves from compact binary mergers with PyCBC Live , 2018, Physical Review D.

[180]  T. Canton,et al.  Classifier for gravitational-wave inspiral signals in nonideal single-detector data , 2017, 1709.02421.

[181]  D. Davis,et al.  Improving the sensitivity of Advanced LIGO using noise subtraction , 2018, Classical and Quantum Gravity.

[182]  Richard K. G. Do,et al.  Convolutional neural networks: an overview and application in radiology , 2018, Insights into Imaging.

[183]  Richard O'Shaughnessy,et al.  Compact binary coalescences in the band of ground-based gravitational-wave detectors , 2009, 0912.1074.

[184]  G. Calamai,et al.  On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors , 2000, gr-qc/0011041.

[185]  Yoshinta Setyawati,et al.  Regression methods in waveform modeling: a comparative study , 2019, Classical and Quantum Gravity.

[186]  Y. Wang,et al.  First Low-Frequency Einstein@Home All-Sky Search for Continuous Gravitational Waves in Advanced LIGO Data , 2017, 1707.02669.

[187]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[188]  Chris L. Fryer,et al.  Gravitational Waves from Gravitational Collapse , 2011, Living reviews in relativity.

[189]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[190]  Michael Boyle,et al.  Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism , 2011, 1106.1021.

[191]  Andrea Taracchini,et al.  Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics , 2018, Physical Review D.

[192]  S. Suvorova,et al.  Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin , 2016, 1606.02412.

[193]  B. Schölkopf,et al.  Convolutional neural networks: a magic bullet for gravitational-wave detection? , 2019, Physical Review D.

[194]  Roderick Murray-Smith,et al.  Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy , 2019, Nature Physics.

[195]  Yi Pan,et al.  Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism , 2013, 1307.6232.

[196]  Michael Boyle,et al.  Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.

[197]  Rory Smith,et al.  Optimal Search for an Astrophysical Gravitational-Wave Background , 2017, 1712.00688.

[198]  M. S. Shahriar,et al.  Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , 2018, The Astrophysical Journal.

[199]  M. S. Shahriar,et al.  Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817 , 2018, The Astrophysical Journal.

[200]  David Keitel,et al.  Adaptive transient Hough method for long-duration gravitational wave transients , 2019, Physical Review D.

[201]  Frank Ohme,et al.  Including higher order multipoles in gravitational-wave models for precessing binary black holes , 2020 .

[202]  Vincent Loriette,et al.  Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a , 2007, Classical and Quantum Gravity.

[203]  Thibault Damour,et al.  Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[204]  Thibault Damour,et al.  Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries , 2008, 0811.2069.

[205]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[206]  Michael Purrer,et al.  Statistical Gravitational Waveform Models: What to Simulate Next? , 2017, 1706.05408.

[207]  Thibault Damour,et al.  Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects , 2018, Physical Review D.