September 2019 Antarctic Sudden Stratospheric Warming: Quasi‐6‐Day Wave Burst and Ionospheric Effects

An exceptionally strong stationary planetary wave with Zonal Wavenumber 1 led to a sudden stratospheric warming (SSW) in the Southern Hemisphere in September 2019. Ionospheric data from ESA's Swarm...

[1]  J. Russell,et al.  Observation of the neutral‐ion coupling through 6 day planetary wave , 2014 .

[2]  B. Funke,et al.  How sudden stratospheric warming affects the whole atmosphere , 2018 .

[3]  A. Prata Observations of the 5–Day Wave in the Stratosphere and Mesosphere , 1989 .

[4]  I. Hirota,et al.  Normal Mode Rossby Waves Observed in the Upper Stratosphere. Part I: First Symmetric Modes of Zonal Wavenumbers 1 and 2 , 1984 .

[5]  Timothy Fuller-Rowell,et al.  Forecasting the dynamic and electrodynamic response to the January 2009 sudden stratospheric warming , 2011 .

[6]  W. V. Snyder,et al.  Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements , 2007 .

[7]  Han L. Liu,et al.  Equatorial and Low Latitude Ionospheric Effects During Sudden Stratospheric Warming Events , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[8]  P. Alken,et al.  Estimating the daytime Equatorial Ionization Anomaly strength from electric field proxies , 2008 .

[9]  Peter H. Siegel,et al.  The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[10]  H. Lühr,et al.  Equatorial ionospheric electrodynamic perturbations during Southern Hemisphere stratospheric warming events , 2013 .

[11]  R. Mcinturff Stratospheric warmings: Synoptic, dynamic and general-circulation aspects , 1978 .

[12]  H. Lühr,et al.  Morphology of high‐latitude plasma density perturbations as deduced from the total electron content measurements onboard the Swarm constellation , 2017 .

[13]  P. R. Shreedevi,et al.  Impact of Sudden Stratospheric Warming of 2009 on the Equatorial and Low‐Latitude Ionosphere of the Indian Longitudes: A Case Study , 2017 .

[14]  I. Hirota,et al.  Normal Mode Rossby Waves Observed in the Upper Stratosphere. Part II: Second Antisymmetric and Symmetric Modes of Zonal Wavenumbers 1 and 2 , 1985 .

[15]  J. Forbes,et al.  Zonally Symmetric Oscillations of the Thermosphere at Planetary Wave Periods , 2018 .

[16]  R. Madden Large-scale, free Rossby waves in the atmosphere—an update , 2007 .

[17]  G. Hulot,et al.  Swarm: A constellation to study the Earth’s magnetic field , 2006 .

[18]  Timothy Fuller-Rowell,et al.  Ionospheric response to sudden stratospheric warming events at low and high solar activity , 2014 .

[19]  L. Chang,et al.  Secondary planetary waves in the middle and upper atmosphere following the stratospheric sudden warming event of January 2012 , 2013 .

[20]  Kirstin Krüger,et al.  The Unusual Midwinter Warming in the Southern Hemisphere Stratosphere 2002: A Comparison to Northern Hemisphere Phenomena , 2005 .

[21]  Varavut Limpasuvan,et al.  The Life Cycle of the Northern Hemisphere Sudden Stratospheric Warmings , 2004 .

[22]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[23]  Franz Zangerl,et al.  SWARM observations of equatorial electron densities and topside GPS track losses , 2015 .

[24]  Sheng‐yang Gu,et al.  Investigation of the Abnormal Quasi 2‐Day Wave Activities During the Sudden Stratospheric Warming Period of January 2006 , 2018, Journal of Geophysical Research: Space Physics.

[25]  Dong L. Wu,et al.  Title : Validation of the Aura Microwave Limb Sounder Temperature and Geopotential Height Measurements , 2007 .

[26]  Z. Xiao,et al.  The Comparison of Lunar Tidal Characteristics in the Low‐Latitudinal Ionosphere Between East Asian and American Sectors During Stratospheric Sudden Warming Events: 2009–2018 , 2019, Journal of Geophysical Research: Space Physics.

[27]  T. Matsuno,et al.  A Dynamical Model of the Stratospheric Sudden Warming , 1971 .

[28]  R. Garcia,et al.  The lower thermosphere during the northern hemisphere winter of 2009: A modeling study using high‐altitude data assimilation products in WACCM‐X , 2013 .

[29]  N. Pedatella,et al.  Sources, Sinks, and Propagation Characteristics of the Quasi 6‐Day Wave and Its Impact on the Residual Mean Circulation , 2018, Journal of Geophysical Research: Atmospheres.

[30]  Jan Laštovička,et al.  Forcing of the ionosphere by waves from below , 2006 .

[31]  N. Pedatella,et al.  The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere , 2013 .

[32]  Wenbin Wang,et al.  Ionospheric variability due to planetary waves and tides for solar minimum conditions , 2010 .

[33]  Bill Wilson,et al.  In a relationship , 2013 .

[34]  M. Rapp,et al.  Composite analysis of the temporal development of waves in the polar MLT region during stratospheric warmings , 2012 .

[35]  Anthea J. Coster,et al.  Impact of sudden stratospheric warmings on equatorial ionization anomaly , 2010 .

[36]  J. Forbes,et al.  Lunar tide in the thermosphere and weakening of the northern polar vortex , 2014 .

[37]  M. Ern,et al.  On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016 , 2017 .

[38]  L. Polvani,et al.  A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks , 2007 .

[39]  A. Maute,et al.  Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents , 2017 .

[40]  P. Alken,et al.  Quasi‐6‐Day Wave Modulation of the Equatorial Electrojet , 2018 .

[41]  M. Kunze,et al.  Effect of sudden stratospheric warming on lunar tidal modulation of the equatorial electrojet , 2012 .

[42]  J. Forbes,et al.  The quasi‐6 day wave and its interactions with solar tides , 2017 .

[43]  Y. Miyoshi Numerical simulation of the 5-day and 16-day waves in the mesopause region , 1999 .

[44]  H. Loon,et al.  The Stratosphere : Phenomena , History and Relevance , 2009 .

[45]  Takuji Nakamura,et al.  The 6.5‐day wave in the mesosphere and lower thermosphere: Evidence for baroclinic/barotropic instability , 2003 .

[46]  M. Jarvis,et al.  The large‐scale dynamics of the mesosphere–lower thermosphere during the Southern Hemisphere stratospheric warming of 2002 , 2004 .

[47]  M. Salby Survey of planetary-scale traveling waves: the state of theory and observations , 1984 .

[48]  L. Chang,et al.  Short‐term variation of the s = 1 nonmigrating semidiurnal tide during the 2002 stratospheric sudden warming , 2009 .

[49]  G. Crowley,et al.  C/NOFS observations of the equatorial ionospheric electric field response to the 2009 major sudden stratospheric warming event , 2011 .

[50]  C. Nayak,et al.  Variation of Small‐Scale Gravity Wave Activity in the Ionosphere During the Major Sudden Stratospheric Warming Event of 2009 , 2019, Journal of Geophysical Research: Space Physics.

[51]  Sheng‐yang Gu,et al.  The Morphology of the 6‐Day Wave in Both the Neutral Atmosphere and F Region Ionosphere Under Solar Minimum Conditions , 2018 .

[52]  A. Chulliat,et al.  Swarm equatorial electric field chain: First results , 2015 .

[53]  V. Harvey,et al.  Stratosphere-mesosphere coupling during stratospheric sudden warming events , 2014 .

[54]  Y. Yamazaki,et al.  Large‐Amplitude Quasi‐10‐Day Waves in the Middle Atmosphere During Final Warmings , 2019, Journal of Geophysical Research: Atmospheres.

[55]  M. Iredell,et al.  First forecast of a sudden stratospheric warming with a coupled whole‐atmosphere/ionosphere model IDEA , 2014 .

[56]  H. Lühr,et al.  Swarm An Earth Observation Mission investigating Geospace , 2008 .

[57]  L. Chang,et al.  Numerical simulation of the 6 day wave effects on the ionosphere: Dynamo modulation , 2016 .

[58]  M. Yamamoto,et al.  Equatorial electrodynamics and neutral background in the Asian sector during the 2009 stratospheric sudden warming , 2011 .

[59]  F. Taylor The stratosphere , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[60]  L. Alberca,et al.  Solar cycle and seasonal behaviour of quasi two and rive day oscillations in the time variations of fOF2 , 1994 .

[61]  Xinan Yue,et al.  Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event , 2010 .

[62]  N. Pedatella,et al.  On the Importance of Interactive Ozone Chemistry in Earth‐System Models for Studying Mesophere‐Lower Thermosphere Tidal Changes during Sudden Stratospheric Warmings , 2019, Journal of Geophysical Research: Space Physics.

[63]  R. Garcia,et al.  Sensitivity of Sudden Stratospheric Warmings to Previous Stratospheric Conditions , 2017 .

[64]  L. Polvani,et al.  A New Look at Stratospheric Sudden Warmings. Part II: Evaluation of Numerical Model Simulations , 2007 .

[65]  J. Laštovička,et al.  Quasi-five- and ten-day oscillations in f0F2 and their possible connection with oscillations at lower ionospheric heights , 1996 .

[66]  R. Roble,et al.  TIME‐GCM study of the ionospheric equatorial vertical drift changes during the 2006 stratospheric sudden warming , 2014 .

[67]  J. Russell,et al.  Observations of the 5-day wave in the mesosphere and lower thermosphere , 2006 .

[68]  P. Alken,et al.  Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet , 2017 .

[69]  E. Friedman Life cycle. , 2003, Health Forum journal.

[70]  Nicholas Pedatella,et al.  Upper mesospheric lunar tides over middle and high latitudes during sudden stratospheric warming events , 2015 .

[71]  K. Yumoto,et al.  Stratospheric warmings and the geomagnetic lunar tide: 1958–2007 , 2012 .

[72]  Shingo Watanabe,et al.  Growth of planetary waves and the formation of an elevated stratopause after a major stratospheric sudden warming in a T213L256 GCM , 2012 .

[73]  R. Roble,et al.  The 6.5-day wave and its seasonal variability in the middle and upper atmosphere , 2004 .

[74]  M. Salby Rossby Normal Modes in Nonuniform Background Configurations. Part I: Simple Fields , 1981 .

[75]  F. Sassi,et al.  Ionosphere variability during the 2009 SSW: Influence of the lunar semidiurnal tide and mechanisms producing electron density variability , 2014 .

[76]  Y. Miyoshi,et al.  A numerical experiment of excitation of the 5-day wave by a GCM , 1999 .

[77]  D. Fritts,et al.  Mesospheric planetary waves over Antarctica during 2002 , 2005 .

[78]  Jorge L. Chau,et al.  Enhanced lunar semidiurnal equatorial vertical plasma drifts during sudden stratospheric warmings , 2011 .

[79]  Anne K. Smith,et al.  Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004 , 2008 .

[80]  P. Alken,et al.  Swarm SCARF equatorial electric field inversion chain , 2013, Earth, Planets and Space.

[81]  A. Coster,et al.  The potential role of stratospheric ozone in the stratosphere‐ionosphere coupling during stratospheric warmings , 2012 .

[82]  A. Patra,et al.  Ionospheric variability over Indian low latitude linked with the 2009 sudden stratospheric warming , 2014 .

[83]  B. Ning,et al.  Study of the Quasi‐5‐Day Wave in the MLT Region by a Meteor Radar Chain , 2018, Journal of Geophysical Research: Atmospheres.

[84]  Arthur D. Richmond,et al.  Attribution of ionospheric vertical plasma drift perturbations to large‐scale waves and the dependence on solar activity , 2013 .

[85]  H. Fujiwara,et al.  Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations , 2012 .

[86]  M. Salby Rossby Normal Modes in Nonuniform Background Configurations. Part II. Equinox and Solstice Conditions , 1981 .

[87]  Tsutomu Nagatsuma,et al.  Lunar‐dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings , 2010 .

[88]  R. A. Madden,et al.  Observations of large‐scale traveling Rossby waves , 1979 .

[89]  W. Skinner,et al.  Observations of the 5-day wave in the mesosphere and lower thermosphere , 1994 .

[90]  J. Yee,et al.  Observations of the 6.5 day wave in the mesosphere and lower thermosphere , 2001 .

[91]  Y. Yamazaki Quasi‐6‐Day Wave Effects on the Equatorial Ionization Anomaly Over a Solar Cycle , 2018, Journal of Geophysical Research: Space Physics.

[92]  J. Forbes,et al.  Lunar tide amplification during the January 2009 stratosphere warming event: Observations and theory , 2012 .

[93]  F. Sassi,et al.  On the day‐to‐day variation of the equatorial electrojet during quiet periods , 2014 .

[94]  Qian Wu,et al.  Climatology of the Quasi‐6‐Day Wave in the Mesopause Region and Its Modulations on Total Electron Content During 2003–2017 , 2019, Journal of Geophysical Research: Space Physics.

[95]  Peter H. Siegel,et al.  Heterodyne radiometer development for the Earth Observing System Microwave Limb Sounder , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[96]  Han L. Liu,et al.  Day-to-day migrating and nonmigrating tidal variability due to the six-day planetary wave , 2012 .

[97]  H. Liu,et al.  Ionospheric response to 2009 sudden stratospheric warming in the Northern Hemisphere , 2014 .

[98]  M. McIntyre How Well do we Understand the Dynamics of Stratospheric Warmings , 1982 .

[99]  J. Chau,et al.  Quiet time ionospheric variability over Arecibo during sudden stratospheric warming events , 2010 .

[100]  P. Mukhtarov,et al.  Stratospheric warmings: The atmosphere–ionosphere coupling paradigm , 2011 .

[101]  J. Forbes,et al.  Evidence for stratosphere sudden warming‐ionosphere coupling due to vertically propagating tides , 2010 .

[102]  J. Yee,et al.  The 6.5‐day wave in the tropical stratosphere and mesosphere , 2002 .

[103]  Clezio Marcos Denardini,et al.  Day‐to‐day variability of equatorial electrojet and its role on the day‐to‐day characteristics of the equatorial ionization anomaly over the Indian and Brazilian sectors , 2015 .

[104]  J. Gregory Middle atmosphere dynamics , 1981, Nature.

[105]  H. Lühr,et al.  On the relationship between weakening of the northern polar vortex and the lunar tidal amplification in the equatorial electrojet , 2015 .

[106]  A. Coster,et al.  Unexpected connections between the stratosphere and ionosphere , 2010 .

[107]  Astrid Maute,et al.  On the variability of the semidiurnal solar and lunar tides of the equatorial electrojet during sudden stratospheric warmings , 2018, Annales Geophysicae.

[108]  P. K. Rajesh,et al.  Revisiting the Modulations of Ionospheric Solar and Lunar Migrating Tides During the 2009 Stratospheric Sudden Warming by Using Global Ionosphere Specification , 2019, Space Weather.

[109]  Amy H. Butler,et al.  Defining Sudden Stratospheric Warmings , 2015 .

[110]  J. Forbes,et al.  Experiments with a lunar atmospheric tidal model , 1997 .

[111]  C. Meyer Gravity wave interactions with mesospheric planetary waves: A mechanism for penetration into the thermosphere-ionosphere system , 1999 .

[112]  J. Forbes Tidal and Planetary Waves , 2013 .

[113]  D. Siskind,et al.  The quasi-6-day waves in NOGAPS-ALPHA forecast model and their climatology in MLS/Aura measurements (2005–2014) , 2018, Journal of Atmospheric and Solar-Terrestrial Physics.

[114]  R. Garcia,et al.  Large-scale Rossby Normal Modes during Some Recent Northern Hemisphere Winters , 2012 .

[115]  A. Kasahara,et al.  Normal Modes of Ultralong Waves in the Atmosphere , 1976 .

[116]  David N. Anderson,et al.  Longitudinal variation of ionospheric vertical drifts during the 2009 sudden stratospheric warming , 2012 .

[117]  Astrid Maute,et al.  Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings , 2015 .

[118]  J. Forbes,et al.  A 6.5‐day westward propagating planetary wave: Origin and characteristics , 1997 .