Entropy of discrete Choquet capacities

We introduce a measure of entropy for any discrete Choquet capacity and we interpret it in the setting of aggregation by the Choquet integral.

[1]  Jean-Luc Marichal,et al.  Determination of weights of interacting criteria from a reference set , 2000, Eur. J. Oper. Res..

[2]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  Didier Dubois,et al.  Extremal Properties of Belief Measures in the Theory of Evidence , 1993, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[4]  Jean-Luc Marichal,et al.  An axiomatic approach of the discrete Sugeno integral as a tool to aggregate interacting criteria in a qualitative framework , 2001, IEEE Trans. Fuzzy Syst..

[5]  Jean-Luc Marichal,et al.  An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria , 2000, IEEE Trans. Fuzzy Syst..

[6]  Michel Grabisch,et al.  Equivalent Representations of Set Functions , 2000, Math. Oper. Res..

[7]  Michel Grabisch,et al.  On equivalence classes of fuzzy connectives-the case of fuzzy integrals , 1995, IEEE Trans. Fuzzy Syst..

[8]  Wolfgang Sander,et al.  Characterizations of sum form information measures on open domains , 1997 .

[9]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[10]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[11]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[12]  P. K. Sahoo,et al.  Characterizations of information measures , 1998 .

[13]  George J. Klir,et al.  UNCERTAINTY IN THE DEMPSTER-SHAFER THEORY , 1991 .

[14]  L. S. Shapley,et al.  17. A Value for n-Person Games , 1953 .

[15]  Ronald R. Yager,et al.  A class of fuzzy measures generated from a Dempster-Shafer belief structure , 1999, Int. J. Intell. Syst..

[16]  Jean-Luc Marichal,et al.  Behavioral analysis of aggregation in multicriteria decision aid , 2000 .

[17]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[18]  M. Sugeno,et al.  A theory of fuzzy measures: Representations, the Choquet integral, and null sets , 1991 .

[19]  J. Fodor,et al.  Preferences and Decisions under Incomplete Knowledge , 2000 .

[20]  M. Roubens,et al.  Entropy of Discrete Fuzzy Measures , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[21]  Ronald R. Yager,et al.  On the entropy of fuzzy measures , 2000, IEEE Trans. Fuzzy Syst..

[22]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[23]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .