Exploiting Mate Choice in Evolutionary Computation: Sexual Selection as a Process of Search, Optimization, And Diversification

Sexual selection through mate choice is a powerful evolutionary process that has been important in the success of sexually-reproducing animals and flowering plants. Over the short term, mate preferences evolve because they improve the outcome of sexual recombination. Over the long term, assortative mate preferences can help maintain genetic diversity, promote speciation, and facilitate evolutionary search through optimal outbreeding; selective mate preferences can reinforce the speed, accuracy, and efficiency of natural selection, can foster the discovery and propagation of evolutionary innovations, and can function as aesthetic selection criteria. These strengths of sexual selection complement those of natural selection, so using both together may prove particularly fruitful in evolutionary computation. This paper reviews the biological theory of sexual selection and some possible applications of sexual selection in evolutionary search, optimization, and diversification. Simulation results are used to illustrate some key points.

[1]  Heinz Mühlenbein,et al.  Parallel Genetic Algorithms, Population Genetics, and Combinatorial Optimization , 1989, Parallelism, Learning, Evolution.

[2]  Andrew Pomiankowski,et al.  The evolution of female mating preferences for male genetic quality , 1988 .

[3]  Alan G. Schultz,et al.  Adapting the Evaluation Space to Improve Global Learning , 1991, ICGA.

[4]  L. Darrell Whitley,et al.  Serial and Parallel Genetic Algorithms as Function Optimizers , 1993, ICGA.

[5]  Bernard Manderick,et al.  The Genetic Algorithm and the Structure of the Fitness Landscape , 1991, ICGA.

[6]  F. Varela,et al.  Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life , 1992 .

[7]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[8]  M. Ridley The Red Queen: Sex and the Evolution of Human Nature , 1993 .

[9]  Peter M. Todd,et al.  Evolutionary wanderlust: sexual selection with directional mate preferences , 1993 .

[10]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[11]  Craig Caldwell,et al.  Tracking a Criminal Suspect Through "Face-Space" with a Genetic Algorithm , 1991, ICGA.

[12]  Larry J. Eshelman,et al.  Crossover's Niche , 1993, ICGA.

[13]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[14]  P Bourgine,et al.  Towards a Practice of Autonomous Systems , 1992 .

[15]  S. Todd Artificial life or surreal art , 1992 .

[16]  SAGAInman HarveyCSRP Species Adaptation Genetic Algorithms: A Basis for a Continuing SAGA , 1992 .

[17]  Martina Gorges-Schleuter,et al.  ASPARAGOS An Asynchronous Parallel Genetic Optimization Strategy , 1989, ICGA.

[18]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[19]  Peter M. Todd,et al.  Parental Guidance Suggested: How Parental Imprinting Evolves Through Sexual Selection as an Adaptive Learning Mechanism , 1993, Adapt. Behav..

[20]  T. Dobzhansky Genetics and the Origin of Species , 1937 .

[21]  H. Roitblat,et al.  Evolutionary wanderlust : Sexual selection with directional mate preferences , 1993 .

[22]  Lashon B. Booker,et al.  Improving the Performance of Genetic Algorithms in Classifier Systems , 1985, ICGA.

[23]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[24]  W. Daniel Hillis,et al.  Co-evolving parasites improve simulated evolution as an optimization procedure , 1990 .

[25]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[26]  Takeshi Yamada,et al.  The ECOlogical Framework II : Improving GA Performance At Virtually Zero Cost , 1993, ICGA.

[27]  David H. Ackley,et al.  Adaptation in Constant Utility Non-Stationary Environments , 1991, ICGA.

[28]  David R. Jefferson,et al.  Selection in Massively Parallel Genetic Algorithms , 1991, ICGA.

[29]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[30]  Kalyanmoy Deb,et al.  Massive Multimodality, Deception, and Genetic Algorithms , 1992, PPSN.

[31]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[32]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[33]  Heinz Mühlenbein,et al.  Darwin's Continent Cycle Theory and Its Simulation by the Prisoner's Dilemma , 1991, Complex Syst..

[34]  C. Darwin The Descent of Man and Selection in Relation to Sex: INDEX , 1871 .

[35]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[36]  David B. Fogel,et al.  Parallel problem solving from nature, 2: Proceedings of the Second Conference on parallel problem solving from nature: R. Männer and B. Manderick (eds.), North-Holland, Amsterdam, ISBN 0-444-89730-5, xii + 618pp., US$168.50/Dfl. 295.00 , 1993 .

[37]  Benjamin W. Wah,et al.  Dynamic Control of Genetic Algorithms in a Noisy Environment , 1993, ICGA.

[38]  Andreas Ostermeier,et al.  An Evolution Strategy with Momentum Adaptation of the Random Number Distribution , 1992, PPSN.

[39]  ダーウィン チャールス,et al.  The descent of man and selection in relation to sex , 1907 .

[40]  Peter M. Todd,et al.  The Role of Mate Choice in Biocomputation: Sexual Selection as a Process of Search, Optimization and Diversification , 1995, Evolution and Biocomputation.

[41]  Martina Gorges-Schleuter,et al.  Comparison of Local Mating Strategies in Massively Parallel Genetic Algorithms , 1992, PPSN.

[42]  M. Wilson The ant and the peacock: altruism and sexual selection from darwin to today , 1992 .

[43]  Larry J. Eshelman,et al.  On Crossover as an Evolutionarily Viable Strategy , 1991, ICGA.

[44]  M. Eigen,et al.  Steps Towards Life: A Perspective on Evolution , 1992 .

[45]  R. Meldola Sexual Selection , 1871, Nature.

[46]  R. Michod,et al.  The Evolution of sex : an examination of current ideas , 1988 .

[47]  Larry J. Eshelman,et al.  Preventing Premature Convergence in Genetic Algorithms by Preventing Incest , 1991, ICGA.

[48]  R. Dawkins The Blind Watchmaker , 1986 .

[49]  Peter M. Todd,et al.  On the Sympatric Origin of Species: Mercurial Mating in the Quicksilver Model , 1991, ICGA.

[50]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[51]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[52]  Terence C. Fogarty ReproductionRankingReplacement and Noisy Evaluations: Experimental Results , 1993, ICGA.