Instant recovery of shape from spectrum via latent space connections

We introduce the first learning-based method for recovering shapes from Laplacian spectra. Our model consists of a cycle-consistent module that maps between learned latent vectors of an auto-encoder and sequences of eigenvalues. This module provides an efficient and effective linkage between Laplacian spectrum and geometry. Our data-driven approach replaces the need for ad-hoc regularizers required by prior methods, while providing more accurate results at a fraction of the computational cost. Our learning model applies without modifications across different dimensions (2D and 3D shapes alike), representations (meshes, contours and point clouds), as well as across different shape classes, and admits arbitrary resolution of the input spectrum without affecting complexity. The increased flexibility allows us to address notoriously difficult tasks in 3D vision and geometry processing within a unified framework, including shape generation from spectrum, mesh super-resolution, shape exploration, style transfer, spectrum estimation from point clouds, segmentation transfer and point-to-point matching.

[1]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[2]  H. Urakawa,et al.  GENERIC PROPERTIES OF THE EIGENVALUE OF THE LAPLACIAN FOR COMPACT RIEMANNIAN MANIFOLDS , 1983 .

[3]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[4]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  David L. Webb,et al.  One cannot hear the shape of a drum , 1992, math/9207215.

[6]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[7]  Tesi di Laurea,et al.  UNIVERSITÀ DEGLI STUDI DI ROMA "LA SAPIENZA" , 2000 .

[8]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[9]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[10]  Martin Rumpf,et al.  Finite Elements on Point Based Surfaces , 2004, PBG.

[11]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[12]  G. Golub,et al.  Inverse Eigenvalue Problems: Theory, Algorithms, and Applications , 2005 .

[13]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[14]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[15]  Bruno Levy,et al.  Spectral Geometry Processing , 2009 .

[16]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[17]  Martin Reuter,et al.  Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions , 2010, International Journal of Computer Vision.

[18]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[19]  Marc Alexa,et al.  Spectral sampling of manifolds , 2010, ACM Trans. Graph..

[20]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[21]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[22]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[23]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[24]  D. Aasen,et al.  Shape from sound: toward new tools for quantum gravity. , 2012, Physical review letters.

[25]  Leonidas J. Guibas,et al.  Map-based exploration of intrinsic shape differences and variability , 2013, ACM Trans. Graph..

[26]  Davide Eynard,et al.  Shape‐from‐Operator: Recovering Shapes from Intrinsic Operators , 2015, Comput. Graph. Forum.

[27]  Wojciech Matusik,et al.  Computational design of metallophone contact sounds , 2015, ACM Trans. Graph..

[28]  L. Verhoeven,et al.  Can one Hear the Shape of a Drum? , 2015 .

[29]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[30]  Achim Kempf,et al.  Towards spectral geometric methods for Euclidean quantum gravity , 2016, 1601.07510.

[31]  Jiajun Wu,et al.  Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling , 2016, NIPS.

[32]  Daniel Cremers,et al.  Anisotropic Diffusion Descriptors , 2016, Comput. Graph. Forum.

[33]  Jonathan Masci,et al.  Geometric deep learning , 2016, SIGGRAPH ASIA Courses.

[34]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[35]  Leonidas J. Guibas,et al.  GRASS: Generative Recursive Autoencoders for Shape Structures , 2017, ACM Trans. Graph..

[36]  Michael J. Black,et al.  3D Menagerie: Modeling the 3D Shape and Pose of Animals , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Michael J. Black,et al.  Learning a model of facial shape and expression from 4D scans , 2017, ACM Trans. Graph..

[38]  Karthik Ramani,et al.  SurfNet: Generating 3D Shape Surfaces Using Deep Residual Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Leonidas J. Guibas,et al.  Functional Characterization of Intrinsic and Extrinsic Geometry , 2017, ACM Trans. Graph..

[40]  Wei Wu,et al.  Large-Scale 3D Shape Reconstruction and Segmentation from ShapeNet Core55 , 2017, ArXiv.

[41]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Ilya Kostrikov,et al.  Surface Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[43]  Alexander M. Bronstein,et al.  Deformable Shape Completion with Graph Convolutional Autoencoders , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44]  Leonidas J. Guibas,et al.  Robust Watertight Manifold Surface Generation Method for ShapeNet Models , 2018, ArXiv.

[45]  Leonidas J. Guibas,et al.  Learning Representations and Generative Models for 3D Point Clouds , 2017, ICML.

[46]  Mathieu Aubry,et al.  AtlasNet: A Papier-M\^ach\'e Approach to Learning 3D Surface Generation , 2018, CVPR 2018.

[47]  Michael J. Black,et al.  Generating 3D faces using Convolutional Mesh Autoencoders , 2018, ECCV.

[48]  Keenan Crane,et al.  Navigating intrinsic triangulations , 2019, ACM Trans. Graph..

[49]  Leonidas J. Guibas,et al.  OperatorNet: Recovering 3D Shapes From Difference Operators , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[50]  Maks Ovsjanikov,et al.  Correspondence-Free Region Localization for Partial Shape Similarity via Hamiltonian Spectrum Alignment , 2019, 2019 International Conference on 3D Vision (3DV).

[51]  Lin Gao SDM-NET : Deep Generative Network for Structured Deformable Mesh , 2019 .

[52]  Dani Lischinski,et al.  SAGNet , 2018, ACM Trans. Graph..

[53]  Maks Ovsjanikov,et al.  Unsupervised Deep Learning for Structured Shape Matching , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[54]  R. D. de Kok Figure 8 , 2019 .

[55]  Leonidas J. Guibas,et al.  StructureNet , 2019, ACM Trans. Graph..

[56]  Hao Zhang,et al.  Learning Implicit Fields for Generative Shape Modeling , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Sven J. Dickinson,et al.  Geometric Disentanglement for Generative Latent Shape Models , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[58]  Maks Ovsjanikov,et al.  Isospectralization, or How to Hear Shape, Style, and Correspondence , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).