Convergence of Spectra of Mesoscopic Systems Collapsing onto a Graph

Abstract Let M be a finite graph in the plane and let Me be a domain that looks like the e-fattened graph M (exact conditions on the domain are given). It is shown that the spectrum of the Neumann Laplacian on Me converges when e → 0 to the spectrum of an ODE problem on M. The presence of an electromagnetic field is also allowed. Considerations of this kind arise naturally in mesoscopic physics and other areas of physics and chemistry. The results of the paper extend the ones previously obtained by J. Rubinstein and M. Schatzman.

[1]  W. D. Evans,et al.  Neumann laplacians on domains and operators on associated trees , 2000 .

[2]  Luck,et al.  Quantum percolation and ballistic conductance on a lattice of wires. , 1992, Physical review. B, Condensed matter.

[3]  Christian Joachim,et al.  Atomic and molecular wires , 1997 .

[4]  J. Rubinstein,et al.  Asymptotics for thin superconducting rings , 1998 .

[5]  W. D. Evans,et al.  Fractals, trees and the Neumann Laplacian , 1993 .

[6]  Gang Bao,et al.  Mathematical Modeling in Optical Science , 2001, Mathematical Modeling in Optical Science.

[7]  R. Carlson Hill's equation for a homogeneous tree , 1997 .

[8]  B. Pavlov,et al.  Scattering problems on noncompact graphs , 1988 .

[9]  Kyōto Daigaku. Sūgakuka Lectures in mathematics , 1968 .

[10]  J. Avron,et al.  Adiabatic quantum transport in multiply connected systems , 1988 .

[11]  J. Rubinstein,et al.  Spectral and variational problems on multiconnected strips , 1997 .

[12]  Yoshimi Saito The limiting equation for Neumann Laplacians on shrinking domains , 2000 .

[13]  Peter Kuchment,et al.  Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs , 1999, Exp. Math..

[14]  Mark Freidlin,et al.  Markov Processes and Di+erential Equations: Asymptotic Problems , 1996 .

[15]  J. Griffith A free-electron theory of conjugated molecules. Part 1.—Polycyclic hydrocarbons , 1953 .

[16]  A. Aviram Molecular Electronics Science and Technology , 1989 .

[17]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model , 1996, SIAM J. Appl. Math..

[18]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[19]  Contact interactions on graph superlattices , 1995, funct-an/9509001.

[20]  A. Aviram,et al.  Conference on Molecular Electronics: Science and Technology, Puerto Rico, 14-18 December 1997: Preface , 1998 .

[21]  J. Griffith,et al.  A free-electron theory of conjugated molecules , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  P. Kuchment,et al.  Asymptotic methods for thin high-contrast two-dimensional PBG materials , 1999 .

[23]  Mark Freidlin,et al.  Diffusion Processes on Graphs and the Averaging Principle , 1993 .

[24]  Exner Lattice Kronig-Penney models. , 1995, Physical review letters.

[25]  Discrete Schrodinger operators and topology , 1999, math-ph/9903025.

[26]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals , 1996, SIAM J. Appl. Math..

[27]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[28]  C. W. Scherr Free‐Electron Network Model for Conjugated Systems. IV , 1953 .

[29]  K. Ruedenberg,et al.  Free‐Electron Network Model for Conjugated Systems. I. Theory , 1953 .

[30]  S. Alexander Superconductivity of networks. A percolation approach to the effects of disorder , 1983 .

[31]  G. Papanicolaou,et al.  High-contrast impedance tomography , 1996 .

[32]  P. Kuchment,et al.  2d photonic crystals with cubic structure: asymptotic analysis , 1998 .

[33]  Peter Kuchment,et al.  Differential Operators on Graphs and Photonic Crystals , 2002, Adv. Comput. Math..

[34]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[35]  Kirchhoff's rule for quantum wires , 1998, math-ph/9806013.

[36]  R. Carlson Inverse eigenvalue problems on directed graphs , 1999 .

[37]  Michelle Schatzman,et al.  On the Eigenvalues of the Laplace Operator on a Thin Set with Neumann Boundary Conditions , 1996 .

[38]  J. Rubinstein,et al.  On multiply connected mesoscopic superconducting structures , 1997 .

[39]  Alexander Figotin,et al.  Spectral Properties of Classical Waves in High-Contrast Periodic Media , 1998, SIAM J. Appl. Math..

[40]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[41]  Kirchhoff's Rule for Quantum Wires. II: The Inverse Problem with Possible Applications to Quantum Computers , 1999, quant-ph/9910053.

[42]  R. Carlson Nonclassical Sturm-Liouville problems and Schrodinger operators on radial trees , 2000 .

[43]  Jacob Rubinstein,et al.  Variational Problems¶on Multiply Connected Thin Strips I:¶Basic Estimates and Convergence¶of the Laplacian Spectrum , 2001 .

[44]  S. Mikhlin,et al.  Mathematical Physics, An Advanced Course , 1973 .