Deformation Induced Hierarchical Twinning Coupled with Omega Transformation in a Metastable β-Ti Alloy

[1]  D. Raabe,et al.  ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy , 2018, Acta Materialia.

[2]  Bin Chen,et al.  Transitional structure of {332}〈113〉β twin boundary in a deformed metastable β-type Ti-Nb-based alloy, revealed by atomic resolution electron microscopy , 2018, Scripta Materialia.

[3]  Jian Lu,et al.  High-order hierarchical nanotwins with superior strength and ductility , 2018 .

[4]  D. Choudhuri,et al.  Strengthening strategy for a ductile metastable β-titanium alloy using low-temperature aging , 2017 .

[5]  D. Choudhuri,et al.  Change in the deformation mode resulting from beta-omega compositional partitioning in a TiMo alloy: Room versus elevated temperature , 2017 .

[6]  Y. Yang,et al.  Reversion of a Parent {130}⟨310⟩_{α^{''}} Martensitic Twinning System at the Origin of {332}⟨113⟩_{β} Twins Observed in Metastable β Titanium Alloys. , 2016, Physical review letters.

[7]  D. Choudhuri,et al.  Precipitate-dislocation interaction mediated Portevin-Le Chatelier-like effect in a beta-stabilized Ti-Mo-Nb-Al alloy , 2016 .

[8]  C. Tasan,et al.  On the mechanism of {332} twinning in metastable β titanium alloys , 2016 .

[9]  M. Niinomi,et al.  Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti–9Cr–0.2O , 2016 .

[10]  C. Tasan,et al.  Deformation mechanism of ω-enriched Ti–Nb-based gum metal: Dislocation channeling and deformation induced ω–β transformation , 2015 .

[11]  C. Tasan,et al.  Origin of shear induced β to ω transition in Ti–Nb-based alloys , 2015 .

[12]  D. Choudhuri,et al.  Influence of Fine-Scale Alpha Precipitation on the Mechanical Properties of the Beta Titanium Alloy Beta-21S , 2015, Metallurgical and Materials Transactions A.

[13]  Huajian Gao,et al.  Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins , 2014, Nature Communications.

[14]  H. Hosoda,et al.  Origin of {3 3 2} twinning in metastable β-Ti alloys , 2014 .

[15]  F. Prima,et al.  Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects , 2013 .

[16]  James C. Williams,et al.  Perspectives on Titanium Science and Technology , 2013 .

[17]  H. Xing,et al.  Mechanical twinning and omega transition by ⟨111⟩ {112} shear in a metastable β titanium alloy , 2008 .

[18]  D. Lassila,et al.  Shock-induced deformation twinning and omega transformation in tantalum and tantalum–tungsten alloys , 2000 .

[19]  D. Lassila,et al.  Shock-Induced Omega Phase in Tantalum , 1998 .

[20]  O. Izumi,et al.  Correlation of tensile properties, deformation modes, and phase stability in commercial β-phase titanium alloys , 1987 .

[21]  O. Izumi,et al.  Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys , 1986 .

[22]  B. Bilby,et al.  The theory of the crystallography of deformation twinning , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  U. Truyen,et al.  [Electron microscopy]. , 1997, Tierarztliche Praxis.

[24]  T. Furuhara,et al.  Transmission Electron Microscopy of {332}〈113〉 Deformation Twin in Ti–15V–3Cr–3Sn–3Al Alloy , 1994 .

[25]  F. Frank,et al.  On deformation by twinning , 1955 .