Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis
暂无分享,去创建一个
[1] M. Ikawa. On the distribution of the poles of the scattering matrix for two strictly convex obstacles , 1983 .
[2] M. Ikawa. Decay of solutions of the wave equation in the exterior of two convex obstacles , 1982 .
[3] R. Melrose,et al. Singularities and energy decay in acoustical scattering , 1979 .
[4] J. Ralston. The first variation of the scattering matrix: An addendum , 1978 .
[5] James Ralston,et al. Decay of solutions of the wave equation outside nontrapping obstacles , 1977 .
[6] R. Phillips,et al. A logrithmic bound on the location of the poles of the scattering matrix , 1972 .
[7] J. Ralston. Trapped rays in spherically symmetric media and poles of the scattering matrix , 1971 .
[8] M. Ikawa. Precise informations on the poles of the scattering matrix for two strictly convex obstacles , 1987 .
[9] V. Petkov. La distribution des pôles de la matrice de diffusion , 1983 .
[10] C. Bardos,et al. La relation de possion pour l'equation des ondes dans un ouvert non borne application a la theorie de la diffusion , 1982 .
[11] M. Ikawa. Mixed Problems for the Wave Equation , 1981 .
[12] Alexander Varchenko,et al. Newton polyhedra and estimation of oscillating integrals , 1976 .