Dynamical Complexity of the 2015 St. Patrick’s Day Magnetic Storm at Swarm Altitudes Using Entropy Measures

The continuously expanding toolbox of nonlinear time series analysis techniques has recently highlighted the importance of dynamical complexity to understand the behavior of the complex solar wind–magnetosphere–ionosphere–thermosphere coupling system and its components. Here, we apply new such approaches, mainly a series of entropy methods to the time series of the Earth’s magnetic field measured by the Swarm constellation. We show successful applications of methods, originated from information theory, to quantitatively study complexity in the dynamical response of the topside ionosphere, at Swarm altitudes, focusing on the most intense magnetic storm of solar cycle 24, that is, the St. Patrick’s Day storm, which occurred in March 2015. These entropy measures are utilized for the first time to analyze data from a low-Earth orbit (LEO) satellite mission flying in the topside ionosphere. These approaches may hold great potential for improved space weather nowcasts and forecasts.

[1]  Daniel N. Baker,et al.  The evolution from weak to strong geomagnetic activity: an interpretation in terms of deterministic chaos , 1990 .

[2]  J. Wanliss,et al.  Fractal properties of SYM--H during quiet and active times , 2005 .

[3]  Georgios Balasis,et al.  Dynamical complexity in Dst time series using non‐extensive Tsallis entropy , 2008 .

[4]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[5]  K M Søndergaard,et al.  [Understanding statistics?]. , 1995, Ugeskrift for laeger.

[6]  Konstantinos Karamanos,et al.  Symbolic Dynamics and Entropy Analysis of Feigenbaum Limit Sets , 1999 .

[7]  Giuseppe Consolini,et al.  Nonlinear Processes in Geophysics On the multi-scale nature of large geomagnetic storms : an empirical mode decomposition analysis , 2012 .

[8]  Georgios Balasis,et al.  Common solar wind drivers behind magnetic storm–magnetospheric substorm dependency , 2017, Scientific Reports.

[9]  G. Hulot,et al.  Swarm: A constellation to study the Earth’s magnetic field , 2006 .

[10]  Anastasios Anastasiadis Special Issue: Tsallis Entropy , 2012, Entropy.

[11]  B. McMillan The Basic Theorems of Information Theory , 1953 .

[12]  Jürgen Kurths,et al.  Statistical Mechanics and Information-Theoretic Perspectives on Complexity in the Earth System , 2013, Entropy.

[13]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[14]  Edward J. Smith,et al.  The nonlinear response of AE to the IMF BS driver: A spectral break at 5 hours , 1990 .

[15]  Georgios Balasis,et al.  Investigating dynamical complexity in the magnetosphere using various entropy measures , 2009 .

[16]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[17]  Enrico Camporeale,et al.  Information theoretical approach to discovering solar wind drivers of the outer radiation belt , 2016 .

[18]  C. Tsallis Generalized entropy-based criterion for consistent testing , 1998 .

[19]  G. Consolini,et al.  Multifractal structure of auroral electrojet index data. , 1996, Physical review letters.

[20]  Daniel N. Baker,et al.  The organized nonlinear dynamics of the magnetosphere , 1996 .

[21]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[22]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[23]  Kostas Karamanos,et al.  Entropy analysis of automatic sequences revisited: An entropy diagnostic for automaticity , 2001 .

[24]  G. Balasis,et al.  Ionospheric response to solar and interplanetary disturbances: a Swarm perspective , 2019, Philosophical Transactions of the Royal Society A.

[25]  Giuseppe Consolini,et al.  Observations of high-latitude geomagnetic field fluctuations during St. Patrick’s Day storm: Swarm and SuperDARN measurements , 2016, Earth, Planets and Space.

[26]  B. Klecker,et al.  Multi-scale magnetic field intermittence in the plasma sheet , 2003 .

[27]  Konstantinos Papadopoulos,et al.  Low-dimensional chaos in magnetospheric activity from AE time series , 1990 .

[28]  Masahisa Sugiura,et al.  Auroral electrojet activity index AE and its universal time variations. , 1966 .

[29]  Maurice Fréchet,et al.  Méthode des fonctions arbitraires : théorie des événements en chaîne dans le cas d'un nombre fini d'états possibles , 1938 .

[30]  G. Crooks On Measures of Entropy and Information , 2015 .

[31]  Vassilis Angelopoulos,et al.  Evidence for intermittency in Earth’s plasma sheet and implications for self-organized criticality , 1999 .

[32]  B. Hao,et al.  Elementary Symbolic Dynamics And Chaos In Dissipative Systems , 1989 .

[33]  S. Kotsiantis,et al.  Discretization Techniques: A recent survey , 2006 .

[34]  Stelios M. Potirakis,et al.  Investigating Dynamical Complexity of Geomagnetic Jerks Using Various Entropy Measures , 2016, Front. Earth Sci..

[35]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[36]  Nils Olsen,et al.  Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model , 2016, Earth, Planets and Space.

[37]  Pierre Gaspard,et al.  Toward a probabilistic approach to complex systems , 1994 .

[38]  Sunny Wing-Yee Tam,et al.  ROMA (Rank-Ordered Multifractal Analyses) of intermittency in space plasmas – a brief tutorial review , 2010 .

[39]  Georgios Balasis,et al.  From pre-storm activity to magnetic storms: A transition described in terms of fractal dynamics , 2006 .

[40]  Wangxin Yu,et al.  Characterization of Surface EMG Signal Based on Fuzzy Entropy , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[41]  Werner Ebeling,et al.  Word frequency and entropy of symbolic sequences: a dynamical perspective , 1992 .

[42]  Konstantinos Papadopoulos,et al.  Reconstruction of low‐dimensional magnetospheric dynamics by singular spectrum analysis , 1993 .

[43]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Massimo Materassi,et al.  An information theory approach to the storm-substorm relationship , 2011 .

[45]  M. Friel,et al.  Substorm behavior of the auroral electrojet indices , 2004 .

[46]  Anthony J. Mannucci,et al.  Ionosphere and Thermosphere Responses to Extreme Geomagnetic Storms , 2018 .

[47]  Stelios M. Potirakis,et al.  Observation of Intermittency‐Induced Critical Dynamics in Geomagnetic Field Time Series Prior to the Intense Magnetic Storms of March, June, and December 2015 , 2018, Journal of Geophysical Research: Space Physics.

[48]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[49]  Ioannis A. Daglis,et al.  The storm-time ring current , 2001 .