Expansion formulas for an extended Hurwitz-Lerch zeta function obtained via fractional calculus
暂无分享,去创建一个
[1] Hari M. Srivastava. Generating relations and other results associated with some families of the extended Hurwitz-Lerch Zeta functions , 2013 .
[2] Hari M. Srivastava,et al. New Results Involving a Class of Generalized Hurwitz- Lerch Zeta Functions and Their Applications , 2013 .
[3] Ram K. Saxena,et al. An extended general Hurwitz-Lerch zeta function as a Mathieu (a, lambda)-series , 2011, Appl. Math. Lett..
[4] Hari M. Srivastava,et al. Some formulas for the Bernoulli and Euler polynomials at rational arguments , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.
[5] Thomas J. Osler,et al. Fundamental properties of fractional derivatives via pochhammer integrals , 1975 .
[6] Thomas J. Osler,et al. Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .
[7] K. Diethelm,et al. Fractional Calculus: Models and Numerical Methods , 2012 .
[8] Yilmaz Simsek,et al. Some families of Genocchi type polynomials and their interpolation functions , 2012 .
[9] J. Liouville. Mémoire sur l'usage que l'on peut faire de la formule de Fourier, dans le calcul des différentielles à indices quelconques. , 1835 .
[10] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[11] Hurwitz Type Multiple Genocchi Zeta Function , 2009 .
[12] T. Osler. Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .
[14] A. Erdélyi,et al. An Integral Equation Involving Legendre Functions , 1964 .
[15] Thomas J. Osler,et al. The Fractional Derivative of a Composite Function , 1970 .
[16] Hari M. Srivastava,et al. Some Generalizations and Basic (or q-) Extensions of the Bernoulli, Euler , 2011 .
[17] E. M. Wright,et al. The asymptotic expansion of integral functions defined by Taylor series , 1940, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[18] H. Srivastava,et al. Zeta and q-Zeta Functions and Associated Series and Integrals , 2011 .
[19] Thomas J. Osler,et al. Fractional Derivatives and Leibniz Rule , 1971 .
[20] Hari M. Srivastava,et al. Some relationships between the generalized Apostol–Bernoulli polynomials and Hurwitz–Lerch Zeta functions , 2006 .
[21] E. W. Barnes,et al. The Asymptotic Expansion of Integral Functions Defined by Taylor's Series , 1906 .
[22] Yilmaz Simsek,et al. INTERPOLATION FUNCTION OF THE GENOCCHI TYPE POLYNOMIALS , 2010, 1011.2417.
[23] B. Ross,et al. Fractional Calculus and Its Applications , 1975 .
[24] Hari M. Srivastava,et al. A New Family of the λ -Generalized Hurwitz-Lerch Zeta Functions with Applications , 2014 .
[25] Yoshikutsu Watanabe. Zum Riemannschen Binomischen Lehrsatz , 1932 .
[26] T. Osler. Leibniz rule, the chain rule, and taylor's theorme for fractional derivatives , 1971 .
[27] H. M. Srivastava,et al. Some expansion formulas for a class of generalized Hurwitz–Lerch Zeta functions , 2006 .
[28] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[29] B. Riemann,et al. Versuch einer allgemeinen Auffassung der Integration und Differentiation. (1847.) , 2013 .
[30] G. H. Hardy,et al. Riemann's Form of Taylor's Series , 1945 .
[31] Richard Tremblay,et al. The use of fractional derivatives to expand analytical functions in terms of quadratic functions with applications to special functions , 2007, Appl. Math. Comput..
[32] O Heavyside,et al. Electromagnetic Theory, Vol. 1 , 1894 .
[33] Shy-Der Lin,et al. Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations , 2004, Appl. Math. Comput..
[34] Hari M. Srivastava,et al. Two-sided inequalities for the extended Hurwitz-Lerch Zeta function , 2011, Comput. Math. Appl..
[35] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[36] R. Tremblay,et al. A new Leibniz rule and its integral analogue for fractional derivatives , 2013 .
[37] M. Riesz. L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .
[38] R. Tremblay,et al. Taylor-like expansion in terms of a rational function obtained by means of fractional derivatives , 2013 .
[39] A. W. Kemp,et al. A treatise on generating functions , 1984 .
[40] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[41] Hari M. Srivastava,et al. Integral and computational representations of the extended Hurwitz–Lerch zeta function , 2011 .
[42] Hari M. Srivastava,et al. Series Associated with the Zeta and Related Functions , 2001 .