Expansion formulas for an extended Hurwitz-Lerch zeta function obtained via fractional calculus

Motivated by the recent investigations of several authors, in this paper, we derive several new expansion formulas involving a generalized Hurwitz-Lerch zeta function introduced and studied recently by Srivastava et al. (Integral Transforms Spec. Funct. 22:487-506, 2011). These expansions are obtained by using some fractional calculus theorems such as the generalized Leibniz rules for the fractional derivatives and the Taylor-like expansions in terms of different functions. Several (known or new) special cases are also considered.MSC:11M25, 11M35, 26A33, 33C05, 33C60.

[1]  Hari M. Srivastava Generating relations and other results associated with some families of the extended Hurwitz-Lerch Zeta functions , 2013 .

[2]  Hari M. Srivastava,et al.  New Results Involving a Class of Generalized Hurwitz- Lerch Zeta Functions and Their Applications , 2013 .

[3]  Ram K. Saxena,et al.  An extended general Hurwitz-Lerch zeta function as a Mathieu (a, lambda)-series , 2011, Appl. Math. Lett..

[4]  Hari M. Srivastava,et al.  Some formulas for the Bernoulli and Euler polynomials at rational arguments , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Thomas J. Osler,et al.  Fundamental properties of fractional derivatives via pochhammer integrals , 1975 .

[6]  Thomas J. Osler,et al.  Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .

[7]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[8]  Yilmaz Simsek,et al.  Some families of Genocchi type polynomials and their interpolation functions , 2012 .

[9]  J. Liouville Mémoire sur l'usage que l'on peut faire de la formule de Fourier, dans le calcul des différentielles à indices quelconques. , 1835 .

[10]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[11]  Hurwitz Type Multiple Genocchi Zeta Function , 2009 .

[12]  T. Osler Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .

[14]  A. Erdélyi,et al.  An Integral Equation Involving Legendre Functions , 1964 .

[15]  Thomas J. Osler,et al.  The Fractional Derivative of a Composite Function , 1970 .

[16]  Hari M. Srivastava,et al.  Some Generalizations and Basic (or q-) Extensions of the Bernoulli, Euler , 2011 .

[17]  E. M. Wright,et al.  The asymptotic expansion of integral functions defined by Taylor series , 1940, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[18]  H. Srivastava,et al.  Zeta and q-Zeta Functions and Associated Series and Integrals , 2011 .

[19]  Thomas J. Osler,et al.  Fractional Derivatives and Leibniz Rule , 1971 .

[20]  Hari M. Srivastava,et al.  Some relationships between the generalized Apostol–Bernoulli polynomials and Hurwitz–Lerch Zeta functions , 2006 .

[21]  E. W. Barnes,et al.  The Asymptotic Expansion of Integral Functions Defined by Taylor's Series , 1906 .

[22]  Yilmaz Simsek,et al.  INTERPOLATION FUNCTION OF THE GENOCCHI TYPE POLYNOMIALS , 2010, 1011.2417.

[23]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[24]  Hari M. Srivastava,et al.  A New Family of the λ -Generalized Hurwitz-Lerch Zeta Functions with Applications , 2014 .

[25]  Yoshikutsu Watanabe Zum Riemannschen Binomischen Lehrsatz , 1932 .

[26]  T. Osler Leibniz rule, the chain rule, and taylor's theorme for fractional derivatives , 1971 .

[27]  H. M. Srivastava,et al.  Some expansion formulas for a class of generalized Hurwitz–Lerch Zeta functions , 2006 .

[28]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[29]  B. Riemann,et al.  Versuch einer allgemeinen Auffassung der Integration und Differentiation. (1847.) , 2013 .

[30]  G. H. Hardy,et al.  Riemann's Form of Taylor's Series , 1945 .

[31]  Richard Tremblay,et al.  The use of fractional derivatives to expand analytical functions in terms of quadratic functions with applications to special functions , 2007, Appl. Math. Comput..

[32]  O Heavyside,et al.  Electromagnetic Theory, Vol. 1 , 1894 .

[33]  Shy-Der Lin,et al.  Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations , 2004, Appl. Math. Comput..

[34]  Hari M. Srivastava,et al.  Two-sided inequalities for the extended Hurwitz-Lerch Zeta function , 2011, Comput. Math. Appl..

[35]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[36]  R. Tremblay,et al.  A new Leibniz rule and its integral analogue for fractional derivatives , 2013 .

[37]  M. Riesz L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .

[38]  R. Tremblay,et al.  Taylor-like expansion in terms of a rational function obtained by means of fractional derivatives , 2013 .

[39]  A. W. Kemp,et al.  A treatise on generating functions , 1984 .

[40]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[41]  Hari M. Srivastava,et al.  Integral and computational representations of the extended Hurwitz–Lerch zeta function , 2011 .

[42]  Hari M. Srivastava,et al.  Series Associated with the Zeta and Related Functions , 2001 .