Numerical simulations of inertial viscoelastic flow with change of type

We examine plane inertial flows of viscoelastic fluids with an instantaneous elastic response. In such flows, the vorticity equation can change type when the velocity of the fluid exceeds the speed of shear waves. We use a finite element algorithm which has been developed for calculating highly viscoelastic flows.

[1]  I. Rutkevich On the thermodynamic interpretation of the evolutionary conditions of the equations of the mechanics of finitely deformable viscoelastic media of maxwell type: PMM vol. 36, n≗2, 1972, pp. 306–319 , 1972 .

[2]  Jung Yul Yoo,et al.  Hyperbolicity and change of type in the flow of viscoelastic fluids through channels , 1985 .

[3]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[4]  D. F. James,et al.  The laminar flow of dilute polymer solutions around circular cylinders , 1970, Journal of Fluid Mechanics.

[5]  M. Crochet,et al.  On the Convergence of the Streamline-upwind Mixed Finite-element , 1990 .

[6]  I. Rutkevich The propagation of small perturbations in a viscoelastic fluid: PMM vol. 34, n≗1, 1970, pp. 41–56 , 1970 .

[7]  M. Denn,et al.  Anomalous Heat Transfer and a Wave Phenomenon in Dilute Polymer Solutions , 1970 .

[8]  Daniel D. Joseph,et al.  Fluid Dynamics Of Viscoelastic Liquids , 1990 .

[9]  Michel Fortin,et al.  On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows , 1989 .

[10]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[11]  R. Darby,et al.  Numerical simulation and change in type in the developing flow of a nonlinear viscoelastic fluid , 1988 .

[12]  Marcel Crochet,et al.  Numerical-simulation of Viscoelastic Flow - a Review , 1989 .

[13]  J. Saut,et al.  Change of type and loss of evolution in the flow of viscoelastic fluids , 1986 .

[14]  M. Crochet,et al.  On the consequence of discretization errors in the numerical calculation of viscoelastic flow , 1985 .

[15]  D. Joseph,et al.  Delayed die swell , 1987 .

[16]  J. Saut,et al.  Hyperbolicity and change of type in the flow of viscoelastic fluids. Technical summary report , 1984 .

[17]  J. Marchal,et al.  Loss of evolution in the flow of viscoelastic fluids , 1986 .

[18]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[19]  M. Crochet,et al.  A new mixed finite element for calculating viscoelastic flow , 1987 .

[20]  A. B. Metzner,et al.  Converging flows of viscoelastic materials , 1969 .

[21]  R. Tanner,et al.  Numerical Simulation of Non-Newtonian Flow , 1984 .

[22]  J. Song,et al.  Numerical simulation of viscoelastic flow through a sudden contraction using a type dependent difference method , 1987 .

[23]  A. Beris,et al.  Galerkin finite element analysis of complex viscoelastic flows , 1986 .

[24]  C. L. Tucker,et al.  Fundamentals of Computer Modeling for Polymer Processing , 1989 .