GMRES implementations and residual smoothing techniques for solving ill-posed linear systems

There are verities of useful Krylov subspace methods to solve nonsymmetric linear system of equations. GMRES is one of the best Krylov solvers with several different variants to solve large sparse linear systems. Any GMRES implementation has some advantages. As the solution of ill-posed problems are important. In this paper, some GMRES variants are discussed and applied to solve these kinds of problems. Residual smoothing techniques are efficient ways to accelerate the convergence speed of some iterative methods like CG variants. At the end of this paper, some residual smoothing techniques are applied for different GMRES methods to test the influence of these techniques on GMRES implementations.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Avram Sidi,et al.  DGMRES: A GMRES-type algorithm for Drazin-inverse solution of singular non-symmetric linear systems , 2001 .

[3]  David R. Kincaid,et al.  Generalizations and modifications of the GMRES iterative method , 1999, Numerical Algorithms.

[4]  Homer F. Walker,et al.  Residual Smoothing Techniques for Iterative Methods , 1994, SIAM J. Sci. Comput..

[5]  Dan Feng,et al.  Tensor-GMRES Method for Large Systems of Nonlinear Equations , 1997, SIAM J. Optim..

[6]  Tony F. Chan,et al.  A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems , 1994, SIAM J. Sci. Comput..

[7]  Willi Schönauer,et al.  Scientific computing on vector computers , 1987, Special topics in supercomputing.

[8]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[9]  Martin Ochmann,et al.  An iterative GMRES-based boundary element solver for acoustic scattering , 2003 .

[10]  M. Pearl Generalized inverses of matrices with entries taken from an arbitrary field , 1968 .

[11]  Miroslav Rozlo3⁄4ník Numerical Stability of the Gmres Method Numerical Stability of the Gmres Method , 2007 .

[12]  Jane Cullum Iterative methods for solvingAx=b, GMRES/FOM versus QMR/BiCG , 1996, Adv. Comput. Math..

[13]  Baojiang Zhong,et al.  Complementary cycles of restarted GMRES , 2008, Numer. Linear Algebra Appl..

[14]  Zhongxiao Jia,et al.  Theoretical and numerical comparisons of GMRES and WZ-GMRES , 2004 .

[15]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[16]  Gene H. Golub,et al.  Closer to the solutions: iterative linear solvers , 1997 .

[17]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[18]  Peter N. Brown,et al.  A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..

[19]  Hua-lei Liu Simpler Hybrid GMRES , 2006 .

[20]  Jörg Liesen,et al.  Worst-case and ideal GMRES for a Jordan block ? , 2004 .

[21]  David A. H. Jacobs,et al.  The State of the Art in Numerical Analysis. , 1978 .

[22]  Rakesh K. Kapania,et al.  A new adaptive GMRES algorithm for achieving high accuracy , 1998, Numer. Linear Algebra Appl..

[23]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[24]  Anne Greenbaum,et al.  Relations between Galerkin and Norm-Minimizing Iterative Methods for Solving Linear Systems , 1996, SIAM J. Matrix Anal. Appl..

[25]  Azeddine Essai Weighted FOM and GMRES for solving nonsymmetric linear systems , 2004, Numerical Algorithms.

[26]  D. Calvetti,et al.  GMRES-type methods for inconsistent systems , 2000 .

[27]  H. Walker Implementation of the GMRES method using householder transformations , 1988 .

[28]  Homer F. Walker,et al.  A simpler GMRES , 1994, Numer. Linear Algebra Appl..

[29]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[30]  Ravindra Boojhawon,et al.  Restarted Simpler GMRES Augmented with Harmonic Ritz Vectors , 2002, International Conference on Computational Science.

[31]  H. Saberi Najafi,et al.  A new computational GMRES method , 2008, Appl. Math. Comput..

[32]  Rüdiger Weiss,et al.  Convergence behavior of generalized conjugate gradient methods , 1990 .

[33]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[34]  H. Walker,et al.  GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..

[35]  M. Rozložník,et al.  Numerical stability of GMRES , 1995 .

[36]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[37]  E. H. Ayachour A fast implementation for GMRES method , 2003 .

[38]  Y. Saad,et al.  Iterative solution of linear systems in the 20th century , 2000 .

[39]  Sosonkina Maria,et al.  A New Adaptive GMRES Algorithm for Achieving High Accuracy , 1996 .

[40]  Ronald B. Morgan,et al.  Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..

[41]  Lloyd N. Trefethen,et al.  A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[42]  Lothar Reichel,et al.  On the Choice of Subspace for Iterative Methods for Linear Discrete Ill-Posed Problems , 2001 .

[43]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[44]  Zhi-Hao Cao,et al.  A note on Krylov subspace methods for singular systems , 2002 .