Memory-Based Grammatical Relation Finding

Chapter 5 systematically tries to improve performance and/or speed and memory requirements by deleting superfluous features and adding useful new ones and by try

[1]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[2]  H. Kucera,et al.  Computational analysis of present-day American English , 1967 .

[3]  Noam Chomsky,et al.  Remarks on Nominalization , 2020, Nominalization.

[4]  Robert F. Simmons,et al.  Computational Linguistics Natural Language Question- Answering Systems: 1969 , 2022 .

[5]  Sahibsingh A. Dudani The Distance-Weighted k-Nearest-Neighbor Rule , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  David L. Waltz,et al.  Toward memory-based reasoning , 1986, CACM.

[8]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[9]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce , 1987 .

[10]  Janet L. Kolodner,et al.  Case-Based Reasoning , 1988, IJCAI 1989.

[11]  George R. Doddington,et al.  The ATIS Spoken Language Systems Pilot Corpus , 1990, HLT.

[12]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[13]  Russell V. Lenth,et al.  Computer Intensive Methods for Testing Hypotheses: An Introduction , 1990 .

[14]  Julian M. Kupiec,et al.  Robust part-of-speech tagging using a hidden Markov model , 1992 .

[15]  Rens Bod,et al.  A Computational Model of Language Performance: Data Oriented Parsing , 1992, COLING.

[16]  Beth Levin,et al.  English Verb Classes and Alternations: A Preliminary Investigation , 1993 .

[17]  Adwait Ratnaparkhi,et al.  A Maximum Entropy Model for Prepositional Phrase Attachment , 1994, HLT.

[18]  Ivan A. Sag,et al.  Book Reviews: Head-driven Phrase Structure Grammar and German in Head-driven Phrase-structure Grammar , 1996, CL.

[19]  Eric Brill,et al.  A Rule-Based Approach to Prepositional Phrase Attachment Disambiguation , 1994, COLING.

[20]  John D. Lafferty,et al.  A Robust Parsing Algorithm for Link Grammars , 1995, IWPT.

[21]  Geoffrey Sampson English for the computer , 1995 .

[22]  David M. Magerman Statistical Decision-Tree Models for Parsing , 1995, ACL.

[23]  Walter Daelemans,et al.  Resolving PP attachment Ambiguities with Memory-Based Learning , 1997, CoNLL.

[24]  Adwait Ratnaparkhi,et al.  A Linear Observed Time Statistical Parser Based on Maximum Entropy Models , 1997, EMNLP.

[25]  Kristian J. Hammond,et al.  Question Answering from Frequently Asked Question Files: Experiences with the FAQ FINDER System , 1997, AI Mag..

[26]  J. Veenstra,et al.  Fast NP Chunking using Memory-Based learning techniques , 1998 .

[27]  Wojciech Skut,et al.  Automation of Treebank Annotation , 1998, CoNLL.

[28]  Mitchell P. Marcus,et al.  Maximum entropy models for natural language ambiguity resolution , 1998 .

[29]  Alexander S. Yeh,et al.  Some Properties of Preposition and Subordinate Conjunction Attachments , 1998, COLING-ACL.

[30]  Erik F. Tjong Kim Sang,et al.  Representing Text Chunks , 1999, EACL.

[31]  Michael Collins,et al.  AT&T at TREC-8 , 1999, TREC.

[32]  E. T. K. Sang Memory-Based Shallow Parsing , 2002, Journal of machine learning research.

[33]  Sanda M. Harabagiu,et al.  LASSO: A Tool for Surfing the Answer Net , 1999, TREC.

[34]  Walter Daelemans,et al.  Memory-Based Word Sense Disambiguation , 2000, Comput. Humanit..

[35]  Alexander S. Yeh,et al.  Comparing two trainable grammatical relations finders , 2000, COLING.

[36]  David Elworthy,et al.  Question Answering Using a Large NLP System , 2000, TREC.

[37]  Ellen M. Voorhees,et al.  Overview of the TREC-9 Question Answering Track , 2000, TREC.

[38]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[39]  Alexander S. Yeh,et al.  Using Existing Systems to Supplement Small Amounts of Annotated Grammatical Relations Training Data , 2000, ACL.

[40]  Eugene Charniak,et al.  Assigning Function Tags to Parsed Text , 2000, ANLP.

[41]  W. Daelemans,et al.  shapaqa : Shallow Parsing for Question Answeringon the World Wide , 2001 .

[42]  Xin Li,et al.  Exploring Eviden e for Shallow Parsing , 2001 .

[43]  Rens Bod What is the Minimal Set of Fragments that Achieves Maximal Parse Accuracy? , 2001, ACL.

[44]  Kenneth C. Litkowski,et al.  CL Research Experiments in TREC-10 Question Answering , 2001, TREC.

[45]  Daniel Gildea,et al.  Corpus Variation and Parser Performance , 2001, EMNLP.

[46]  Antal van den Bosch,et al.  Shallow Parsing on the Basis of Words Only: A Case Study , 2002, ACL.

[47]  Michael Collins,et al.  New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron , 2002, ACL.

[48]  Michael Collins,et al.  Head-Driven Statistical Models for Natural Language Parsing , 2003, CL.

[49]  W. Wong,et al.  On ψ-Learning , 2003 .

[50]  Raymond J. Mooney,et al.  Learning Transformation Rules for Semantic Parsing , 2004 .

[51]  S. Salzberg,et al.  A weighted nearest neighbor algorithm for learning with symbolic features , 2004, Machine Learning.

[52]  Wei Zhong Liu,et al.  Bias in information-based measures in decision tree induction , 1994, Machine Learning.

[53]  C. J. van Rijsbergen,et al.  Information Retrieval , 1979, Encyclopedia of GIS.