Forensic electrochemistry: sensing the molecule of murder atropine.

We present the electroanalytical sensing of atropine using disposable and economic screen printed graphite sensors. The electroanalytical determination of atropine is found to be possible over the concentration range of 5 μM to 50 μM with a detection limit of 3.9 μM (based on 3-sigma) found to be possible. We demonstrate proof-of-concept that this approach provides a rapid and inexpensive sensing strategy for determining the molecule of murder atropine in diet Coca-Cola samples.

[1]  Jonathan P. Metters,et al.  Electroanalytical sensing of selenium(IV) utilising screen printed graphite macro electrodes , 2013 .

[2]  R. A. Dar,et al.  Electrochemical studies of quinine in surfactant media using hanging mercury drop electrode: a cyclic voltammetric study. , 2012, Colloids and surfaces. B, Biointerfaces.

[3]  R. A. Dar,et al.  Electrochemical determination of atropine at multi-wall carbon nanotube electrode based on the enhancement effect of sodium dodecyl benzene sulfonate. , 2012, Colloids and surfaces. B, Biointerfaces.

[4]  M. Singla,et al.  Voltammetric determination of citric acid and quinine hydrochloride using polypyrrole–pentacyanonitrosylferrate/platinum electrode , 2011 .

[5]  Rashid O. Kadara,et al.  Direct oxidation of methionine at screen printed graphite macroelectrodes: Towards rapid sensing platforms , 2011 .

[6]  Rashid O. Kadara,et al.  Screen printed graphite macroelectrodes for the direct electron transfer of cytochrome c. , 2011, The Analyst.

[7]  Jonathan P. Metters,et al.  New directions in screen printed electroanalytical sensors: an overview of recent developments. , 2011, The Analyst.

[8]  Rashid O. Kadara,et al.  Graphite screen printed electrodes for the electrochemical sensing of chromium(VI). , 2010, The Analyst.

[9]  Tianyan You,et al.  Simultaneous determination of atropine, anisodamine, and scopolamine in plant extract by nonaqueous capillary electrophoresis coupled with electrochemiluminescence and electrochemistry dual detection. , 2010, Journal of chromatography. A.

[10]  D. Rančić,et al.  Identification of atropine and scopolamine by HPLC in buckwheat flour contamination with Datura stramonium seeds , 2009 .

[11]  Rashid O. Kadara,et al.  Manufacturing electrochemical platforms: Direct-write dispensing versus screen printing , 2008 .

[12]  G. Mostafa,et al.  PVC Membrane Sensor for Potentiometric Determination of Atropine in Some Pharmaceutical Formulations , 2008 .

[13]  H. Ju,et al.  Simultaneous Electrochemiluminescence Detection of Anisodamine, Atropine, and Scopolamine in Flos daturae by Capillary Electrophoresis Using β‐Cyclodextrin as Additive , 2007 .

[14]  P. Steenkamp,et al.  Fatal Datura poisoning: identification of atropine and scopolamine by high performance liquid chromatography/photodiode array/mass spectrometry. , 2004, Forensic science international.

[15]  Y. Hirose,et al.  Quantitative analysis of tropane alkaloids in biological materials by gas chromatography-mass spectrometry. , 2002, Forensic science international.

[16]  J. Wyatt,et al.  Atropine poisoning after drinking Indian tonic water. , 1997, European journal of emergency medicine : official journal of the European Society for Emergency Medicine.

[17]  R. Kitz,et al.  The effects of pH on penetration and action of procaine 14C, atropine 3H, n-butanol 14C and halothane 14C in single giant axons of the squid. , 1972, Neuropharmacology.