A regional ionospheric TEC mapping technique over China and adjacent areas: GNSS data processing and DINEOF analysis

A technique is developed to derive two-dimensional maps of total electron content (TEC) over China and adjacent areas using Global Navigation Satellite System (GNSS) data from the Crustal Movement Observation Network of China (CMONOC) and the International Global Navigation Satellite System Service (IGS). A revised self-calibration of pseudo-range errors (SCORE) algorithm is used to derive the TEC and to determine the Differential Code Biases (DCBs) simultaneously. The accuracy and validity of this technique is verified in two ways. Firstly, the estimated TEC is compared with the results derived using DCBs from Center for Orbit Determination of Europe (CODE) under different solar activity conditions and seasons; secondly, sample TEC along the receiver-to-satellite ray paths are simulated by NeQuick model and are reprocessed by this TEC derivation technique to make the accuracy test. Two-dimensional maps of vertical TEC of ionospheric pierce points (IPPs) are obtained accordingly with a time resolution of 30 s. The data interpolating empirical orthogonal functions (DINEOF) technique is then used to make the extrapolation for the unknown or missing data points. The optimal EOF modes for data reconstruction are specified via cross-validation method. The regional TEC distribution over China and adjacent areas is scaled into grid size of 1° × 1° for each 5 min, which can well reflect the characteristic of large-scale regional variations and temporal evolution as well as the small-scale local features of ionosphere.创新点1. 利用中国及周边区域的地基GNSS观测数据进行TEC解算, 并采用伪距误差自校正技术来计算硬件偏差, 得到高精度TEC星下点数据。2. 采用经验正交函数法插值法构建覆盖中国及周边区域的高分辨率TEC地图

[1]  Zahra Bouya,et al.  Regional GPS-based ionospheric TEC model over Australia using Spherical Cap Harmonic Analysis , 2010 .

[2]  Ruizhi Chen,et al.  Spherical cap harmonic model for mapping and predicting regional TEC , 2011 .

[3]  Takuya Tsugawa,et al.  A new technique for mapping of total electron content using GPS network in Japan , 2002 .

[4]  Timothy Fuller-Rowell,et al.  US‐TEC: A new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real‐time GPS data , 2004 .

[5]  Xiaoqing Pi,et al.  Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data , 1999 .

[6]  Plamen Mukhtarov,et al.  Global TEC maps based on GNNS data: 2. Model evaluation , 2013 .

[7]  Gregory Bishop,et al.  Autonomous estimation of plasmasphere content using GPS measurements , 2002 .

[8]  Xiaoqing Pi,et al.  Global ionosphere perturbations monitored by the Worldwide GPS Network , 1996 .

[9]  A. Garcia-Rigo,et al.  The IGS VTEC maps: a reliable source of ionospheric information since 1998 , 2009 .

[10]  S. Schaer Mapping and predicting the Earth's ionosphere using the Global Positioning System. , 1999 .

[11]  Alexander Barth,et al.  Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF , 2009 .

[12]  Aaron J. Ridley,et al.  A global model: Empirical orthogonal function analysis of total electron content 1999–2009 data , 2012 .

[13]  Koji Matsumoto,et al.  Regional ionosphere map over Japanese Islands , 2002 .

[14]  Filippos Vallianatos,et al.  On the tectonoelectric zonation in the Hellenic Arc , 2000 .

[15]  J. Beckers,et al.  Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields , 2007 .

[16]  Hong Yuan,et al.  Research on regional ionospheric TEC modeling using RBF neural network , 2014, Science China Technological Sciences.

[17]  Feng Ding,et al.  Modeling the global ionospheric total electron content with empirical orthogonal function analysis , 2012 .

[18]  Michel Rixen,et al.  Self consistent and computationally efficient EOF calculation from incomplete oceanographic data sets , 2003 .

[19]  Biqiang Zhao,et al.  An empirical orthogonal function model of total electron content over China , 2008 .

[20]  P. Y. Georgiadou,et al.  Modelling the ionosphere for an active control network of GPS stations , 1994 .

[21]  Guanyi Ma,et al.  Derivation of TEC and estimation of instrumental biases from GEONET in Japan , 2002 .

[22]  Anthony J. Mannucci,et al.  A global mapping technique for GPS‐derived ionospheric total electron content measurements , 1998 .

[23]  Donald Danskin,et al.  Developing a GPS TEC mapping service over Canada , 2011 .

[24]  S. Schlüter,et al.  GPS ionospheric imaging of the north polar ionosphere on 30 October 2003 , 2005 .

[25]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[26]  Zuo Xiao,et al.  Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes , 2010 .

[27]  Sandro M. Radicella,et al.  The evolution of the DGR approach to model electron density profiles , 2001 .

[28]  Lyubka Pashova,et al.  Global TEC maps based on GNSS data: 1. Empirical background TEC model , 2013 .

[29]  Attila Komjathy,et al.  Global ionospheric total electron content mapping using the global positioning system , 1997 .

[30]  J. Feltens,et al.  Development of a new three‐dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre , 2007 .

[31]  Jaume Sanz,et al.  High resolution TEC monitoring method using permanent ground GPS receivers , 1997 .

[32]  John Bosco Habarulema,et al.  Regional GPS TEC modeling; Attempted spatial and temporal extrapolation of TEC using neural networks , 2011 .

[33]  Anthea J. Coster,et al.  Automated GPS processing for global total electron content data , 2006 .

[34]  Li Li,et al.  Influences of the day‐night differences of ionospheric variability on the estimation of GPS differential code bias , 2015 .

[35]  Li Qiang,et al.  Methods of Estimation of GPS Instrumental Bias from Single Site's GPS Data and Comparative Study of Results , 2007 .

[36]  Anthony J. Mannucci,et al.  Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers , 1995 .

[37]  T. Maruyama,et al.  Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake , 2011 .

[38]  Juha Hyyppä,et al.  Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle , 2014 .

[39]  C. Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[40]  Wei Zhang,et al.  The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability , 2014 .

[41]  Orhan Arikan,et al.  Regional TEC mapping with Random Field Priors and Kriging , 2008 .

[42]  Sandro M. Radicella,et al.  A family of ionospheric models for different uses , 2000 .

[43]  Jaume Sanz,et al.  Improvement of global ionospheric VTEC maps by using kriging interpolation technique , 2005 .

[44]  Wei Zhang,et al.  The influence of geomagnetic storms on the estimation of GPS instrumental biases , 2009 .

[45]  G. Bishop,et al.  Algorithms that Use the Ik , 1996 .

[46]  Tao Yu,et al.  Using the GPS observations to reconstruct the ionosphere three-dimensionally with an ionospheric data assimilation and analysis system (IDAAS) , 2014 .

[47]  Takuya Tsugawa,et al.  GPS observations of medium-scale traveling ionospheric disturbances over Europe , 2011 .

[48]  Alexander Barth,et al.  Conclusions References , 2004 .

[49]  Vincent Toumazou,et al.  Using a Lanczos Eigensolver in the Computation of Empirical Orthogonal Functions , 2001 .

[50]  Shimei Yu,et al.  A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation , 2015 .