The Aeromonas metallo-beta-lactamases: genetics, enzymology, and contribution to drug resistance.

Aeromonads are environmental microorganisms that can be responsible for both human and animal infections. Individual Aeromonas strains can produce up to three different, inducible, chromosomally encoded beta-lactamases, including a group 1 molecular class C cephalosporinase, a group 2d molecular class D penicillinase, and a group 3 molecular class B metallo-beta-lactamase, which contribute to beta-lactam resistance in members of this genus. Among these enzymes, the metallo-beta-lactamases are clinically relevant because of their ability to hydrolyze carbapenem antibiotics, and also represent a relevant investigational model for studying molecular class B beta-lactamases because of their unique enzymological behavior. An overview on the distribution, genetics, and enzymology of these enzymes is reported, and the contribution of these enzymes to microbial drug resistance is also discussed.

[1]  S. Gamblin,et al.  Enzyme kinetics and biochemical analysis of ImiS, the metallo-beta-lactamase from Aeromonas sobria 163a. , 1996, The Journal of antimicrobial chemotherapy.

[2]  J. Frère,et al.  The 3‐D structure of a zinc metallo‐beta‐lactamase from Bacillus cereus reveals a new type of protein fold. , 1995 .

[3]  L. Hall,et al.  Sequence analysis of two chromosomally mediated inducible beta-lactamases from Aeromonas sobria, strain 163a, one a class D penicillinase, the other an AmpC cephalosporinase. , 1995, The Journal of antimicrobial chemotherapy.

[4]  G. Jacoby,et al.  A functional classification scheme for beta-lactamases and its correlation with molecular structure , 1995, Antimicrobial agents and chemotherapy.

[5]  G. Rossolini,et al.  Distribution of cphA or related carbapenemase-encoding genes and production of carbapenemase activity in members of the genus Aeromonas , 1995, Antimicrobial agents and chemotherapy.

[6]  A. MacGowan,et al.  A clinical isolate of Aeromonas sobria with three chromosomally mediated inducible beta-lactamases: a cephalosporinase, a penicillinase and a third enzyme, displaying carbapenemase activity. , 1995, The Journal of antimicrobial chemotherapy.

[7]  G. Amicosante,et al.  Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-beta-lactamases , 1995, Antimicrobial agents and chemotherapy.

[8]  K. Bush,et al.  Cloning and expression of a cloxacillin-hydrolyzing enzyme and a cephalosporinase from Aeromonas sobria AER 14M in Escherichia coli: requirement for an E. coli chromosomal mutation for efficient expression of the class D enzyme , 1994, Antimicrobial Agents and Chemotherapy.

[9]  Timothy R. Walsh,et al.  Sequence analysis of the L1 metallo-β-lactamase from Xanthomonas maltophilia , 1994 .

[10]  O. Massidda,et al.  High specificity of cphA-encoded metallo-beta-lactamase from Aeromonas hydrophila AE036 for carbapenems and its contribution to beta-lactam resistance , 1993, Antimicrobial Agents and Chemotherapy.

[11]  J. Frère,et al.  An overview of the kinetic parameters of class B beta-lactamases. , 1993, The Biochemical journal.

[12]  M. Collins,et al.  Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. , 1992, International journal of systematic bacteriology.

[13]  K. Bush,et al.  Biochemical characterization of the metallo-beta-lactamase CcrA from Bacteroides fragilis TAL3636 , 1992, Antimicrobial Agents and Chemotherapy.

[14]  J. Janda,et al.  Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas , 1991, Clinical Microbiology Reviews.

[15]  O. Massidda,et al.  The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases , 1991, Journal of bacteriology.

[16]  Y. Gluzman,et al.  Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636 , 1990, Antimicrobial Agents and Chemotherapy.

[17]  C. Sanders,et al.  Purification and characterization of inducible beta-lactamases in Aeromonas spp , 1990, Antimicrobial Agents and Chemotherapy.

[18]  D. Higgins,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Clustal: Blockina Blockinpackage Blockinfor Blockinperforming Multiple Blockinsequence Blockinalignment Blockinon Blockina Minicomputer Article Blockin Blockinin Blockin , 2022 .

[19]  J. Bakken,et al.  Beta-lactam resistance in Aeromonas spp. caused by inducible beta-lactamases active against penicillins, cephalosporins, and carbapenems , 1988, Antimicrobial Agents and Chemotherapy.

[20]  D. Phillips,et al.  An X-ray-crystallographic study of beta-lactamase II from Bacillus cereus at 0.35 nm resolution. , 1987, The Biochemical journal.

[21]  M. Hussain,et al.  Cloning and sequencing of the metallothioprotein beta-lactamase II gene of Bacillus cereus 569/H in Escherichia coli , 1985, Journal of bacteriology.

[22]  S. G. Waley,et al.  The production and molecular properties of the zinc beta-lactamase of Pseudomonas maltophilia IID 1275. , 1985, The Biochemical journal.

[23]  M. Mondaca,et al.  Resistance of Aeromonas hydrophila to β-lactam antibiotics , 1984 .

[24]  M. Miller,et al.  In-vitro antagonism by N-formimidoyl thienamycin and cefoxitin of second and third generation cephalosporins in Aeromonas hydrophila and Serratia marcescens. , 1983, The Journal of antimicrobial chemotherapy.

[25]  R. Sykes,et al.  The -lactamases of Gram-negative bacteria and their rle in resistance to -lactam antibiotics , 1976 .

[26]  I. Phillips,et al.  Beta-lactamases with high activity against imipenem and Sch 34343 from Aeromonas hydrophila. , 1986, The Journal of antimicrobial chemotherapy.