Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements

Recent genome sequencing studies have identified several classes of complex genomic rearrangements that appear to be derived from a single catastrophic event rather than numerous incremental steps. In this review, Zhang et al. discuss these phenomena, summarize current models, and consider the impact of massive chromosomal change on the development of diseases such as cancer.

[1]  N. Tommerup,et al.  The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2 , 2013, European Journal of Human Genetics.

[2]  J. Haber,et al.  Break-induced DNA replication. , 2013, Cold Spring Harbor perspectives in biology.

[3]  David Haussler,et al.  Double minute chromosomes in glioblastoma multiforme are revealed by precise reconstruction of oncogenic amplicons. , 2013, Cancer research.

[4]  S. Gabriel,et al.  Pan-cancer patterns of somatic copy-number alteration , 2013, Nature Genetics.

[5]  Steven J. M. Jones,et al.  Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. , 2013, Blood.

[6]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[7]  H. Drexler,et al.  Chromothripsis in Hodgkin lymphoma , 2013, Genes, chromosomes & cancer.

[8]  F. Barr,et al.  Melanoma-associated mutations in protein phosphatase 6 cause chromosome instability and DNA damage owing to dysregulated Aurora-A , 2013, Journal of Cell Science.

[9]  E. Shapiro,et al.  Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.

[10]  T. Deerinck,et al.  Catastrophic Nuclear Envelope Collapse in Cancer Cell Micronuclei , 2013, Cell.

[11]  L. Aaltonen,et al.  Characterization of uterine leiomyomas by whole-genome sequencing. , 2013, The New England journal of medicine.

[12]  M. Debatisse,et al.  Characterization at nucleotide resolution of the homogeneously staining region sites of insertion in two cancer cell lines , 2013, Nucleic acids research.

[13]  E. Cuppen,et al.  Chromothripsis in congenital disorders and cancer: similarities and differences. , 2013, Current opinion in cell biology.

[14]  C. Morton,et al.  Mechanisms for Structural Variation in the Human Genome , 2013, Current Genetic Medicine Reports.

[15]  L. Campbell,et al.  Chromothripsis under the microscope: a cytogenetic perspective of two cases of AML with catastrophic chromosome rearrangement. , 2013, Cancer genetics.

[16]  J. Yokota,et al.  Genome-wide identification of genes with amplification and/or fusion in small cell lung cancer , 2013, Genes, chromosomes & cancer.

[17]  Lovelace J. Luquette,et al.  Diverse Mechanisms of Somatic Structural Variations in Human Cancer Genomes , 2013, Cell.

[18]  Jay Shendure,et al.  The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line , 2013, Nature.

[19]  Ryan M. Layer,et al.  Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms , 2013, Genome research.

[20]  Saskia D. Hiltemann,et al.  Gene fusions by chromothripsis of chromosome 5q in the VCaP prostate cancer cell line , 2013, Human Genetics.

[21]  X. Estivill,et al.  Sporadic and reversible chromothripsis in chronic lymphocytic leukemia revealed by longitudinal genomic analysis , 2013, Leukemia.

[22]  A. Sivachenko,et al.  Punctuated Evolution of Prostate Cancer Genomes , 2013, Cell.

[23]  A. Carr,et al.  Replication stress and genome rearrangements: lessons from yeast models. , 2013, Current opinion in genetics & development.

[24]  M. Thayer,et al.  DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability. , 2013, Seminars in cancer biology.

[25]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[26]  Gary L. Gallia,et al.  TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal , 2013, Proceedings of the National Academy of Sciences.

[27]  J. Korbel,et al.  Criteria for Inference of Chromothripsis in Cancer Genomes , 2013, Cell.

[28]  Paul Theodor Pyl,et al.  The Genomic and Transcriptomic Landscape of a HeLa Cell Line , 2013, G3: Genes, Genomes, Genetics.

[29]  Sean Davis,et al.  Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. , 2013, Cancer research.

[30]  D. Schadendorf,et al.  TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.

[31]  M. Ravi,et al.  Chromatin condensation dynamics and implications of induced premature chromosome condensation. , 2013, Biochimie.

[32]  Mark D. Johnson,et al.  Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes , 2013, Genome research.

[33]  Yu Zhang,et al.  Mechanisms of Programmed DNA Lesions and Genomic Instability in the Immune System , 2013, Cell.

[34]  Giovanni Parmigiani,et al.  Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation , 2013, Proceedings of the National Academy of Sciences.

[35]  Robert T. Jones,et al.  Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations , 2013, Nature Genetics.

[36]  A. Carr,et al.  Recombination-restarted replication makes inverted chromosome fusions at inverted repeats , 2012, Nature.

[37]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[38]  D. Pellman,et al.  Linking abnormal mitosis to the acquisition of DNA damage , 2012, The Journal of cell biology.

[39]  Paz Polak,et al.  Differential relationship of DNA replication timing to different forms of human mutation and variation. , 2012, American journal of human genetics.

[40]  P. Jallepalli,et al.  Chromothripsis: chromosomes in crisis. , 2012, Developmental cell.

[41]  J. Haber,et al.  Mutations arising during repair of chromosome breaks. , 2012, Annual review of genetics.

[42]  J. Marshall,et al.  Modelling Breakage-Fusion-Bridge Cycles as a Stochastic Paper Folding Process , 2012, 1211.2356.

[43]  D. Cleveland,et al.  Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements , 2012, Nature Medicine.

[44]  Peter J. Campbell,et al.  Evolution of the cancer genome , 2012, Nature Reviews Genetics.

[45]  Stephen P. Jackson,et al.  Chromothripsis and cancer: causes and consequences of chromosome shattering , 2012, Nature Reviews Cancer.

[46]  T. E. Wilson,et al.  De Novo CNV Formation in Mouse Embryonic Stem Cells Occurs in the Absence of Xrcc4-Dependent Nonhomologous End Joining , 2012, PLoS genetics.

[47]  Yongjun Zhao,et al.  Poly‐gene fusion transcripts and chromothripsis in prostate cancer , 2012, Genes, chromosomes & cancer.

[48]  Steven J. M. Jones,et al.  Subgroup-specific structural variation across 1,000 medulloblastoma genomes , 2012, Nature.

[49]  B. Schuster-Böckler,et al.  Chromatin organization is a major influence on regional mutation rates in human cancer cells , 2012, Nature.

[50]  Markus J. van Roosmalen,et al.  Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. , 2012, Cell reports.

[51]  Patricia A. Hunt,et al.  Human aneuploidy: mechanisms and new insights into an age-old problem , 2012, Nature Reviews Genetics.

[52]  Pengfei Liu,et al.  Mechanisms for recurrent and complex human genomic rearrangements. , 2012, Current opinion in genetics & development.

[53]  Steven A. Roberts,et al.  Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. , 2012, Molecular cell.

[54]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[55]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[56]  T. Fennell,et al.  Melanoma genome sequencing reveals frequent PREX2 mutations , 2012, Nature.

[57]  Ira M. Hall,et al.  Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration , 2012, Nature Genetics.

[58]  G. Getz,et al.  High-order chromatin architecture shapes the landscape of chromosomal alterations in cancer , 2012 .

[59]  D. Zwijnenburg,et al.  Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes , 2012, Nature.

[60]  Nayun Kim,et al.  Transcription as a source of genome instability , 2012, Nature Reviews Genetics.

[61]  L. Gianaroli,et al.  Multiple meiotic errors caused by predivision of chromatids in women of advanced maternal age undergoing in vitro fertilisation , 2012, European Journal of Human Genetics.

[62]  N. Carter,et al.  Estimation of rearrangement phylogeny for cancer genomes. , 2012, Genome research.

[63]  C. Amemiya,et al.  Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour , 2012, PLoS genetics.

[64]  David Pellman,et al.  Causes and consequences of aneuploidy in cancer , 2012, Nature Reviews Genetics.

[65]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[66]  R. Wilson,et al.  Chromothripsis and Human Disease: Piecing Together the Shattering Process , 2012, Cell.

[67]  Neil J Ganem,et al.  DNA breaks and chromosome pulverization from errors in mitosis , 2012, Nature.

[68]  M. Hetzer,et al.  Transient nuclear envelope rupturing during interphase in human cancer cells , 2012, Nucleus.

[69]  Alan Hodgkinson,et al.  The large‐scale distribution of somatic mutations in cancer genomes , 2012, Human mutation.

[70]  B. Dutrillaux,et al.  Common fragile sites: mechanisms of instability revisited. , 2012, Trends in genetics : TIG.

[71]  Ira M. Hall,et al.  Characterizing complex structural variation in germline and somatic genomes. , 2012, Trends in genetics : TIG.

[72]  S. De,et al.  DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes , 2011, Nature Biotechnology.

[73]  Alan Hodgkinson,et al.  Variation in the mutation rate across mammalian genomes , 2011, Nature Reviews Genetics.

[74]  Markus J. van Roosmalen,et al.  Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer , 2011, Genome Biology.

[75]  J. Lupski,et al.  Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome , 2011, Nature Genetics.

[76]  B. Browning,et al.  Haplotype phasing: existing methods and new developments , 2011, Nature Reviews Genetics.

[77]  P. Stankiewicz,et al.  Chromosome Catastrophes Involve Replication Mechanisms Generating Complex Genomic Rearrangements , 2011, Cell.

[78]  N. Munshi,et al.  Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. , 2011, Blood.

[79]  Markus J. van Roosmalen,et al.  Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. , 2011, Human molecular genetics.

[80]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[81]  J. Vermeesch,et al.  The Human Cleavage Stage Embryo Is a Cradle of Chromosomal Rearrangements , 2011, Cytogenetic and Genome Research.

[82]  Xavier Estivill,et al.  Cancer: When catastrophe strikes a cell , 2011, Nature.

[83]  Matthew Meyerson,et al.  Cancer Genomes Evolve by Pulverizing Single Chromosomes , 2011, Cell.

[84]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[85]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[86]  Andrew Menzies,et al.  The patterns and dynamics of genomic instability in metastatic pancreatic cancer , 2010, Nature.

[87]  Domenico Trombetta,et al.  Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. , 2010, Genome research.

[88]  Tom Misteli,et al.  Higher-order genome organization in human disease. , 2010, Cold Spring Harbor perspectives in biology.

[89]  Martin J. Aryee,et al.  Androgen-induced TOP2B mediated double strand breaks and prostate cancer gene rearrangements , 2010, Nature Genetics.

[90]  J. Haber,et al.  Increased Mutagenesis and Unique Mutation Signature Associated with Mitotic Gene Conversion , 2010, Science.

[91]  Laurent Farinelli,et al.  Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. , 2010, Genome research.

[92]  P. Hupé,et al.  Extrachromosomal amplification mechanisms in a glioma with amplified sequences from multiple chromosome loci. , 2010, Human molecular genetics.

[93]  T. Halazonetis,et al.  Genomic instability — an evolving hallmark of cancer , 2010, Nature Reviews Molecular Cell Biology.

[94]  P. Deloukas,et al.  Signatures of mutation and selection in the cancer genome , 2010, Nature.

[95]  Duane A. Compton,et al.  Proliferation of aneuploid human cells is limited by a p53-dependent mechanism , 2010, The Journal of cell biology.

[96]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[97]  H. Ohtsuki,et al.  Accumulation of driver and passenger mutations during tumor progression , 2009, Proceedings of the National Academy of Sciences.

[98]  Magali Olivier,et al.  TP53 mutations in human cancers: origins, consequences, and clinical use. , 2010, Cold Spring Harbor perspectives in biology.

[99]  J. Salk Clonal evolution in cancer , 2010 .

[100]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[101]  Jie Zhang,et al.  Nuclear Receptor-Induced Chromosomal Proximity and DNA Breaks Underlie Specific Translocations in Cancer , 2009, Cell.

[102]  Paul Medvedev,et al.  Computational methods for discovering structural variation with next-generation sequencing , 2009, Nature Methods.

[103]  J. Bartek,et al.  The DNA-damage response in human biology and disease , 2009, Nature.

[104]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[105]  M. Terradas,et al.  DNA lesions sequestered in micronuclei induce a local defective-damage response. , 2009, DNA repair.

[106]  J. Lupski,et al.  Mechanisms of change in gene copy number , 2009, Nature Reviews Genetics.

[107]  J. Lupski,et al.  Complex human chromosomal and genomic rearrangements. , 2009, Trends in genetics : TIG.

[108]  D. Cleveland,et al.  Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis , 2009, Nature Reviews Molecular Cell Biology.

[109]  J. Lupski,et al.  The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans , 2009, Nature Genetics.

[110]  P. Stankiewicz,et al.  Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. , 2009, Human molecular genetics.

[111]  T. Rabbitts,et al.  Commonality but Diversity in Cancer Gene Fusions , 2009, Cell.

[112]  Geert Verbeke,et al.  Chromosome instability is common in human cleavage-stage embryos , 2009, Nature Medicine.

[113]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[114]  J. Stamatoyannopoulos,et al.  Human mutation rate associated with DNA replication timing , 2009, Nature Genetics.

[115]  S. Warren,et al.  Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants. , 2009, American journal of human genetics.

[116]  T. Misteli,et al.  The emerging role of nuclear architecture in DNA repair and genome maintenance , 2009, Nature Reviews Molecular Cell Biology.

[117]  M. Olivier,et al.  TP 53 Mutations in Human Cancers : Origins , Consequences , and Clinical Use , 2009 .

[118]  Antony V. Cox,et al.  Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing , 2008, Nature Genetics.

[119]  Jiri Bartek,et al.  An Oncogene-Induced DNA Damage Model for Cancer Development , 2008, Science.

[120]  L. Mullenders,et al.  Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects , 2008, Cell Research.

[121]  J. Lupski,et al.  A DNA Replication Mechanism for Generating Nonrecurrent Rearrangements Associated with Genomic Disorders , 2007, Cell.

[122]  E. Lander,et al.  Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma , 2007, Proceedings of the National Academy of Sciences.

[123]  Philip M. Kim,et al.  Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome , 2007, Science.

[124]  Andrew Menzies,et al.  Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. , 2007, Genome research.

[125]  B. Johansson,et al.  The impact of translocations and gene fusions on cancer causation , 2007, Nature Reviews Cancer.

[126]  E. Birney,et al.  Patterns of somatic mutation in human cancer genomes , 2007, Nature.

[127]  Tom Misteli,et al.  Spatial genome organization in the formation of chromosomal translocations. , 2007, Seminars in cancer biology.

[128]  Kenny Q. Ye,et al.  Novel patterns of genome rearrangement and their association with survival in breast cancer. , 2006, Genome research.

[129]  P. Mieczkowski,et al.  The Pattern of Gene Amplification Is Determined by the Chromosomal Location of Hairpin-Capped Breaks , 2006, Cell.

[130]  J. Haber,et al.  Gene Amplification: Yeast Takes a Turn , 2006, Cell.

[131]  S. Rosenberg,et al.  On the Mechanism of Gene Amplification Induced under Stress in Escherichia coli , 2006, PLoS genetics.

[132]  B. Dutrillaux,et al.  Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[133]  David Pellman,et al.  Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells , 2005, Nature.

[134]  E. Eichler,et al.  Fine-scale structural variation of the human genome , 2005, Nature Genetics.

[135]  Dimitris Kletsas,et al.  Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions , 2005, Nature.

[136]  Jiri Bartek,et al.  Cell-cycle checkpoints and cancer , 2004, Nature.

[137]  D. Meek,et al.  The p53 response to DNA damage. , 2004, DNA repair.

[138]  Simon C Watkins,et al.  Resolution of anaphase bridges in cancer cells , 2004, Chromosoma.

[139]  Z. Yang,et al.  Probability models for DNA sequence evolution , 2004, Heredity.

[140]  G. Obe,et al.  The human leukocyte test system , 1976, Human Genetics.

[141]  Martin Strauch,et al.  Reconstructing Tumor Genome Architectures , 2022 .

[142]  Tom Misteli,et al.  Spatial proximity of translocation-prone gene loci in human lymphomas , 2003, Nature Genetics.

[143]  F. Alt,et al.  Unrepaired DNA Breaks in p53-Deficient Cells Lead to Oncogenic Gene Amplification Subsequent to Translocations , 2002, Cell.

[144]  M. Thayer,et al.  Delayed replication timing leads to delayed mitotic chromosome condensation and chromosomal instability of chromosome translocations , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[145]  D. Gisselsson,et al.  Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[146]  Y. Lazebnik,et al.  Oncogene-dependent apoptosis in extracts from drug-resistant cells. , 1997, Genes & development.

[147]  D. Housman,et al.  Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[148]  G. Wahl,et al.  Recent progress in understanding mechanisms of mammalian DNA amplification , 1989, Cell.

[149]  S. Gould,et al.  Punctuated equilibria: the tempo and mode of evolution reconsidered , 1977, Paleobiology.

[150]  P. Nowell The clonal evolution of tumor cell populations. , 1976, Science.

[151]  G. Obe,et al.  The human leulocyte test system. VII. Further investigations concerning micronucleus-derived premature chromosome condensation. , 1975, Humangenetik.

[152]  P. N. Rao,et al.  Mammalian Cell Fusion : Induction of Premature Chromosome Condensation in Interphase Nuclei , 1970, Nature.

[153]  A. Sandberg,et al.  CHROMOSOME PULVERIZATION IN HUMAN BINUCLEATE CELLS FOLLOWING COLCEMID TREATMENT , 1967, The Journal of cell biology.

[154]  B. Mcclintock,et al.  The Stability of Broken Ends of Chromosomes in Zea Mays. , 1941, Genetics.

[155]  D. Schadendorf,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2022 .