Manipulation-Resistant Reputations Using Hitting Time

Popular reputation systems for linked networks can be manipulated by spammers who strategically place links. In PageRank [Brin and Page 98], pages endorse others by placing links, and the global link structure is analyzed to determine the reputation of each page. Though this is meant to be a global measure, page υ can boost its own PageRank considerably using a simple self-endorsement strategy: placing outlinks to form short directed cycles. In contrast, we show that expected hitting time—the time to reach υ in a random walk—measures essentially the same quantity as PageRank, but does not depend on υ's outlinks. We develop a reputation system based on hitting time and show that it resists tampering by individuals or groups who strategically place outlinks. We also present an algorithm to efficiently compute hitting time for all nodes in a massive graph; conventional algorithms do not scale adequately.

[1]  Hector Garcia-Molina,et al.  Web Spam Taxonomy , 2005, AIRWeb.

[2]  Franco Scarselli,et al.  Inside PageRank , 2005, TOIT.

[3]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[4]  Eric J. Friedman,et al.  Manipulability of PageRank under Sybil Strategies , 2006 .

[5]  Philip Heidelberger,et al.  Fast simulation of rare events in queueing and reliability models , 1993, TOMC.

[6]  John E. Hopcroft,et al.  Manipulation-Resistant Reputations Using Hitting Time , 2007, WAW.

[7]  Alice Cheng,et al.  Sybilproof reputation mechanisms , 2005, P2PECON '05.

[8]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[9]  Hector Garcia-Molina,et al.  The Eigentrust algorithm for reputation management in P2P networks , 2003, WWW '03.

[10]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[11]  Dániel Fogaras,et al.  Towards Scaling Fully Personalized PageRank , 2004, WAW.

[12]  Hector Garcia-Molina,et al.  Link spam detection based on mass estimation , 2006, VLDB.

[13]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[14]  Konstantin Avrachenkov,et al.  Monte Carlo Methods in PageRank Computation: When One Iteration is Sufficient , 2007, SIAM J. Numer. Anal..

[15]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[16]  Konstantin Avrachenkov,et al.  The Effect of New Links on Google Pagerank , 2006 .

[17]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[18]  Carl D. Meyer,et al.  Deeper Inside PageRank , 2004, Internet Math..

[19]  Allan Borodin,et al.  Finding authorities and hubs from link structures on the World Wide Web , 2001, WWW '01.

[20]  Steve Chien,et al.  Link Evolution: Analysis and Algorithms , 2004, Internet Math..

[21]  Shlomo Moran,et al.  Rank-Stability and Rank-Similarity of Link-Based Web Ranking Algorithms in Authority-Connected Graphs , 2005, Information Retrieval.

[22]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[23]  Moshe Tennenholtz,et al.  Incentive compatible ranking systems , 2007, AAMAS '07.

[24]  Hector Garcia-Molina,et al.  Combating Web Spam with TrustRank , 2004, VLDB.

[25]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[26]  John R. Douceur,et al.  The Sybil Attack , 2002, IPTPS.

[27]  Benjamin Van Roy,et al.  Detecting colluders in pagerank: finding slow mixing states in a markov chain , 2005 .

[28]  Michael I. Jordan,et al.  Stable algorithms for link analysis , 2001, SIGIR '01.

[29]  Hector Garcia-Molina,et al.  Link Spam Alliances , 2005, VLDB.

[30]  Ramesh Govindan,et al.  Making Eigenvector-Based Reputation Systems Robust to Collusion , 2004, WAW.