Internal inductance predictive control for Tokamaks

Control of the plasma inductance is an essential tool for the successful operation of Tokamaks in order to overcome stability issues as well as the new challenges specific to advanced scenarios operation. Thus, tokamak operation may benefit from model predictive control techniques to extend the pulse duration by reducing instabilities while guaranteeing tokamak integrity. The numerical results seem to indicate that internal inductance and current profiles can be adequately controlled which will influence the L-H transition timing, the density peaking and pedestal pressure. In this regard, the need for optimal, robust control emerges as a key factor in the development of a nuclear fusion reactor.

[1]  J. A. Romero,et al.  Plasma internal inductance dynamics in a tokamak , 2010, 1009.1984.

[2]  T.K. Fowler,et al.  Nuclear fusion , 1989, IEEE Potentials.

[3]  W. Dorland,et al.  Plasma Physics and Controlled Fusion , 1984 .

[4]  Imad M. Jaimoukha,et al.  Modeling and control of TCV , 2005, IEEE Transactions on Control Systems Technology.

[5]  Maria Letizia Corradini,et al.  IEEE Transactions on Control Systems Technology , 2004 .

[6]  F. Felici,et al.  Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control , 2012 .

[7]  D. A. Humphreys,et al.  ITER startup studies in the DIII-D tokamak , 2008 .

[8]  Faa Federico Felici,et al.  Development and validation of a tokamak skin effect transformer model , 2012 .

[9]  Izaskun Garrido Hernandez,et al.  Observer-based real-time control for the poloidal beta of the plasma using diamagnetic measurements in tokamak fusion reactors , 2011, IEEE Conference on Decision and Control and European Control Conference.

[10]  S. Malang,et al.  Fusion Engineering and Design , 2012 .

[11]  J. Lister,et al.  Experimental vertical stability studies for ITER performance and design guidance , 2009 .

[12]  Izaskun Garrido Hernandez,et al.  Sliding mode control of a tokamak transformer , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[13]  Didier Mazon,et al.  Feedback control of the safety factor profile evolution during formation of an advanced tokamak discharge , 2006 .

[14]  C. Kessel,et al.  Simulation of the hybrid and steady state advanced operating modes in ITER , 2007 .

[15]  D. A. Humphreys,et al.  Understanding and predicting the dynamics of tokamak discharges during startup and rampdown , 2009 .

[16]  Massimiliano Mattei,et al.  Current ramps in tokamaks: from present experiments to ITER scenarios , 2011 .

[17]  J. A. Leuer,et al.  Development of ITER 15 MA ELMy H-mode inductive scenario , 2008 .

[18]  Eugenio Schuster,et al.  Optimal Tracking Control of Current Profile in Tokamaks , 2011, IEEE Transactions on Control Systems Technology.

[19]  D. A. Humphreys,et al.  Towards model-based current profile control at DIII-D , 2007 .

[20]  Faa Federico Felici,et al.  From profile to sawtooth control: developing feedback control using ECRH/ECCD systems on the TCV tokamak , 2009 .

[21]  Bayu Jayawardhana,et al.  17th IFAC World Congress , 2008 .

[22]  I. T. Chapman,et al.  Controlling sawtooth oscillations in tokamak plasmas , 2010 .

[23]  M. Walker,et al.  Design and simulation of extremum-seeking open-loop optimal control of current profile in the DIII-D tokamak , 2008 .

[24]  Jet Efda Contributors,et al.  Real-Time Profile Control for Advanced Tokamak Operation , 2008 .

[25]  E. Schuster,et al.  Ramp-Up-Phase Current-Profile Control of Tokamak Plasmas via Nonlinear Programming , 2010, IEEE Transactions on Plasma Science.

[26]  Alfredo Pironti,et al.  Magnetic Control of Tokamak Plasmas , 2008 .

[27]  SLIDING-MODE LOOP VOLTAGE CONTROL USING ASTRA-MATLAB INTEGRATION IN TOKAMAK REACTORS , 2012 .

[28]  Massimiliano Mattei,et al.  Principal physics developments evaluated in the ITER design review , 2009 .

[29]  Aitor J. Garrido,et al.  Robust Sliding Mode Control for Tokamaks , 2012 .

[30]  G. Ambrosino,et al.  Magnetic control of plasma current, position, and shape in Tokamaks: a survey or modeling and control approaches , 2005, IEEE Control Systems.

[31]  T. C. Luce,et al.  Realizing Steady State Tokamak Operation for Fusion Energy , 2009 .

[32]  D. J. Campbell,et al.  Chapter 1: Overview and summary , 1999 .

[33]  D. Lynch Canadian Conference on Electrical and Computer Engineering , 2005, Canadian Journal of Electrical and Computer Engineering.

[34]  Jet Efda Contributors,et al.  A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET , 2008 .

[35]  Alfredo Pironti,et al.  A model-based technique for integrated real-time profile control in the JET tokamak , 2004 .