Efficient algorithms for sequence detection in non-Gaussian noise with intersymbol interference

Sequence detection is studied for communication channels with intersymbol interference and non-Gaussian noise using a novel adaptive receiver structure. The receiver adapts itself to the noise environment using an algorithm which employs a Gaussian mixture distribution model and the expectation maximization algorithm. Two alternate procedures are studied for sequence detection. These are a procedure based on the Viterbi (1967) algorithm and a symbol-by-symbol detection procedure. The Viterbi algorithm minimizes the probability the sequence is in error and the symbol-by-symbol detector minimizes symbol error rate, which are different.

[1]  H. Vincent Poor,et al.  Performance of DS/SSMA Communications in Impulsive Channels - Part I: Linear Correlation Receivers , 1986, IEEE Transactions on Communications.

[2]  Theodore S. Rappaport,et al.  Measurements and Models of Radio Frequency Impulsive Noise for Indoor Wireless Communications , 1993, IEEE J. Sel. Areas Commun..

[3]  Chrysostomos L. Nikias,et al.  Incoherent receivers in alpha-stable impulsive noise , 1995, IEEE Trans. Signal Process..

[4]  S.A. Kassam,et al.  Robust techniques for signal processing: A survey , 1985, Proceedings of the IEEE.

[5]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[6]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[7]  J. D. Parsons,et al.  The Mobile Radio Propagation Channel , 1991 .

[8]  S. Kassam Signal Detection in Non-Gaussian Noise , 1987 .

[9]  Rick S. Blum,et al.  An adaptive spatial diversity receiver for non-Gaussian interference and noise , 1997 .

[10]  K. Abend,et al.  Statistical detection for communication channels with intersymbol interference , 1970 .

[11]  Marco Lops,et al.  Canonical detection in spherically invariant noise , 1995, IEEE Trans. Commun..

[12]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[13]  D. W. Hagelbarger,et al.  Recurrent codes: Easily mechanized, burst-correcting, binary codes , 1959 .

[14]  Tommy Öberg,et al.  Robust detection in digital communications , 1995, IEEE Trans. Commun..

[15]  John G. Proakis,et al.  Digital Communications , 1983 .

[16]  John G. Proakis,et al.  An adaptive receiver for digital signaling through channels with intersymbol interference , 1969, IEEE Trans. Inf. Theory.

[17]  Edward A. Lee,et al.  Digital communication (2. ed.) , 1994 .

[18]  G. David Forney,et al.  Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference , 1972, IEEE Trans. Inf. Theory.

[19]  A. Öztürk,et al.  Non-Gaussian random vector identification using spherically invariant random processes , 1993 .