On the Existence of Stable, Causal Multipliers for Systems With Slope-Restricted Nonlinearities

The stability of a feedback interconnection of a linear time invariant (LTI) system and a slope-restricted nonlinearity is revisited. Unlike the normal treatment of this problem, in which multipliers are explicitly chosen and then stability conditions checked, this technical note derives existence conditions for a sub-class of these multipliers, namely those which are L 1 bounded, stable, causal and of order equal to the LTI part of the system. It is proved that for the single-input-single-output case, these existence conditions can be expressed as a set of linear matrix inequalities and thus can be solved efficiently with modern optimization software. Examples illustrate the effectiveness of the results.

[1]  Ali Saberi,et al.  Semi-global output regulation for linear systems subject to input saturation-a low-and-high gain design , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[2]  Michael G. Safonov,et al.  All stability multipliers for repeated MIMO nonlinearities , 2005, Syst. Control. Lett..

[3]  U. Jönsson Stability analysis with Popov multipliers and integral quadratic constraints , 1997 .

[4]  Rodrigo González,et al.  Control of longitudinal movement of a plane using combined model reference adaptive control , 2005 .

[5]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[6]  Alexandre Megretski,et al.  New results for analysis of systems with repeated nonlinearities , 2001, Autom..

[7]  M. Safonov,et al.  Zames-Falb multipliers for MIMO nonlinearities , 2000 .

[8]  M. Safonov,et al.  Zames-Falb multipliers for MIMO nonlinearities , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[9]  J. Suykens,et al.  An absolute stability criterion for the Lur'e problem with sector and slope restricted nonlinearities , 1998 .

[10]  Michael G. Safonov,et al.  All multipliers for repeated monotone nonlinearities , 2002, IEEE Trans. Autom. Control..

[11]  Wassim M. Haddad,et al.  Absolute stability criteria for multiple slope-restricted monotonic nonlinearities , 1995, IEEE Trans. Autom. Control..

[12]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[13]  Jun Nakanishi,et al.  Composite adaptive control with locally weighted statistical learning , 2005, Neural Networks.

[14]  K. Narendra,et al.  A new adaptive estimator for linear systems , 1992 .

[15]  Faryar Jabbari,et al.  Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation , 2000, Autom..

[16]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[17]  Jonathan P. How,et al.  A KYP lemma and invariance principle for systems with multiple hysteresis non-linearities , 2001 .

[18]  Michael G. Safonov,et al.  An algorithm to compute multipliers for repeated monotone nonlinearities , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[19]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[20]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[21]  L. Praly,et al.  Adaptive nonlinear regulation: estimation from the Lyapunov equation , 1992 .

[22]  J. Wen,et al.  Robustness analysis of LTI systems with structured incrementally sector bounded nonlinearities , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[23]  Guido Herrmann,et al.  Advanced Strategies in Control Systems with Input and Output Constraints , 2006 .

[24]  K. Narendra,et al.  Combined direct and indirect approach to adaptive control , 1989 .

[25]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[26]  Sophie Tarbouriech,et al.  Anti-windup design with guaranteed regions of stability for discrete-time linear systems , 2004, Proceedings of the 2004 American Control Conference.

[27]  Weiping Li,et al.  Composite adaptive control of robot manipulators , 1989, Autom..

[28]  Weiping Li,et al.  Adaptive robot control: A new perspective , 1987, 26th IEEE Conference on Decision and Control.

[29]  PooGyeon Park,et al.  Stability criteria of sector- and slope-restricted Lur'e systems , 2002, IEEE Trans. Autom. Control..

[30]  Adrian Wills,et al.  Zames-Falb Multipliers for Quadratic Programming , 2007, IEEE Transactions on Automatic Control.

[31]  Daniel E. Miller A new approach to model reference adaptive control , 2003, IEEE Trans. Autom. Control..