Simulation-Based Inference Methods for Particle Physics

Our predictions for particle physics processes are realized in a chain of complex simulators. They allow us to generate high-fidelity simulated data, but they are not well-suited for inference on the theory parameters with observed data. We explain why the likelihood function of high-dimensional LHC data cannot be explicitly evaluated, why this matters for data analysis, and reframe what the field has traditionally done to circumvent this problem. We then review new simulation-based inference methods that let us directly analyze high-dimensional data by combining machine learning techniques and information from the simulator. Initial studies indicate that these techniques have the potential to substantially improve the precision of LHC measurements. Finally, we discuss probabilistic programming, an emerging paradigm that lets us extend inference to the latent process of the simulator.

[1]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[2]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[3]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[4]  P. Diggle,et al.  Monte Carlo Methods of Inference for Implicit Statistical Models , 1984 .

[5]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[6]  K. Kondo Dynamical Likelihood Method for Reconstruction of Events with Missing Momentum. I. Method and Toy Models , 1988 .

[7]  Soni,et al.  Analysis for magnetic moment and electric dipole moment form factors of the top quark via e+e--->tt-bar. , 1992, Physical review. D, Particles and fields.

[8]  M. Davier,et al.  The optimal method for the measurement of tau polarization , 1993 .

[9]  K. Kondo,et al.  Dynamical Likelihood Method for Reconstruction of Events with Missing Momentum. III. Analysis of a CDF High P T eµ Event as t\bar t Production , 1993 .

[10]  M. Diehl,et al.  Optimal observables for the measurement of three gauge boson couplings ine+e−→W+W− , 1994 .

[11]  L. Holmström,et al.  A new multivariate technique for top quark search , 1995 .

[12]  Kyle S. Cranmer Kernel estimation in high-energy physics , 2000 .

[13]  S. Moretti,et al.  HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes) , 2001 .

[14]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[15]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[16]  K. Bos,et al.  A precision measurement of the mass of the top quark , 2004 .

[17]  F. Siegert,et al.  Event generation with SHERPA 1.1 , 2008, 0811.4622.

[18]  George Michailidis,et al.  Sequential Experiment Design for Contour Estimation From Complex Computer Codes , 2008, Technometrics.

[19]  Radford M Neal Computing Likelihood Functions for High-Energy Physics Experiments when Distributions are Defined by Simulators with Nuisance Parameters , 2008 .

[20]  O. Mattelaer,et al.  MadWeight: automatic event reweighting with matrix elements , 2009 .

[21]  Alfio Lazzaro,et al.  The RooStats Project , 2010, 1009.1003.

[22]  N. Tran,et al.  Spin determination of single-produced resonances at hadron colliders , 2010, 1001.3396.

[23]  A. Barr,et al.  A review of the mass measurement techniques proposed for the Large Hadron Collider , 2010, 1004.2732.

[24]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[25]  O. Mattelaer,et al.  The Matrix Element Method and QCD Radiation , 2010, 1010.2263.

[26]  Noah D. Goodman,et al.  Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation , 2011, AISTATS.

[27]  D. Soper,et al.  Finding physics signals with shower deconstruction , 2011, 1102.3480.

[28]  Ling Li,et al.  Sequential design of computer experiments for the estimation of a probability of failure , 2010, Statistics and Computing.

[29]  K. Cranmer,et al.  HistFactory: A tool for creating statistical models for use with RooFit and RooStats , 2012 .

[30]  W. Marsden I and J , 2012 .

[31]  N. Tran,et al.  Spin and parity of a single-produced resonance at the LHC , 2012, 1208.4018.

[32]  D. J. Nott,et al.  Approximate Bayesian computation via regression density estimation , 2012, 1212.1479.

[33]  F. Maltoni,et al.  Unravelling tth via the matrix element method. , 2013, Physical review letters.

[34]  A. Korytov,et al.  Precision studies of the Higgs boson decay channel H ! ZZ ! 4ℓ with MEKD , 2012, 1210.0896.

[35]  J. Lykken,et al.  The Matrix Element Method: Past, Present, and Future , 2013, 1307.3546.

[36]  D. Soper,et al.  Finding top quarks with shower deconstruction , 2012, 1211.3140.

[37]  J. Campbell,et al.  Finding the Higgs boson in decays to $Z \gamma$ using the matrix element method at Next-to-Leading Order , 2013, 1301.7086.

[38]  C. Englert,et al.  Extracting precise Higgs couplings by using the matrix element method , 2013 .

[39]  Kyle Cranmer,et al.  Practical Statistics for the LHC , 2014, 1503.07622.

[40]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.

[41]  D. Soper,et al.  Finding physics signals with event deconstruction , 2014, 1402.1189.

[42]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[43]  M. Gutmann,et al.  Statistical Inference of Intractable Generative Models via Classification , 2014 .

[44]  D. Schouten,et al.  Accelerated matrix element method with parallel computing , 2014, Comput. Phys. Commun..

[45]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[46]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[47]  P. Uwer,et al.  Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy , 2015, 1506.08798.

[48]  Gilles Louppe,et al.  Approximating Likelihood Ratios with Calibrated Discriminative Classifiers , 2015, 1506.02169.

[49]  Gilles Louppe,et al.  Carl: a Likelihood-free Inference Toolbox , 2016, J. Open Source Softw..

[50]  Karsten Koeneke,et al.  A morphing technique for signal modelling in a multidimensional space of coupling parameters , 2016 .

[51]  Shakir Mohamed,et al.  Learning in Implicit Generative Models , 2016, ArXiv.

[52]  Gilles Louppe,et al.  Unifying generative models and exact likelihood-free inference with conditional bijections , 2016 .

[53]  Pierre Baldi,et al.  Parameterized neural networks for high-energy physics , 2016, The European Physical Journal C.

[54]  M. Xiao,et al.  Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques , 2016, 1606.03107.

[55]  C. Englert,et al.  Measuring the Higgs-bottom coupling in weak boson fusion , 2015, 1512.03429.

[56]  Cranmer Kyle NIPS 2016 Keynote: Machine Learning & Likelihood Free Inference in Particle Physics , 2016 .

[57]  P. Uwer,et al.  The Matrix Element Method at next-to-leading order QCD for hadronic collisions: single top-quark production at the LHC as an example application , 2017, 1712.04527.

[58]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[59]  K. Cranmer,et al.  Better Higgs boson measurements through information geometry , 2016, 1612.05261.

[60]  C. Rogan,et al.  Sparticles in motion: Analyzing compressed SUSY scenarios with a new method of event reconstruction , 2017 .

[61]  B. Wandelt,et al.  Generalized massive optimal data compression , 2017, 1712.00012.

[62]  Gilles Louppe,et al.  Learning to Pivot with Adversarial Networks , 2016, NIPS.

[63]  Gilles Louppe,et al.  Likelihood-free inference with an improved cross-entropy estimator , 2018, ArXiv.

[64]  Gilles Louppe,et al.  Constraining Effective Field Theories with Machine Learning. , 2018, Physical review letters.

[65]  Jakob H. Macke,et al.  Likelihood-free inference with emulator networks , 2018, AABI.

[66]  Gilles Louppe,et al.  A guide to constraining effective field theories with machine learning , 2018, Physical Review D.

[67]  J. Brehmer,et al.  Better Higgs-CP Tests Through Information Geometry , 2017, 1712.02350.

[68]  Ritabrata Dutta,et al.  Likelihood-free inference via classification , 2014, Stat. Comput..

[69]  Michael U. Gutmann,et al.  Dynamic Likelihood-free Inference via Ratio Estimation (DIRE) , 2018, ArXiv.

[70]  Benjamin Dan Wandelt,et al.  Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology , 2018, 1801.01497.

[71]  Benjamin Dan Wandelt,et al.  Nuisance hardened data compression for fast likelihood-free inference , 2019, Monthly Notices of the Royal Astronomical Society.

[72]  Benjamin Nachman,et al.  AI Safety for High Energy Physics , 2019, ArXiv.

[73]  J. Brehmer,et al.  Benchmarking simplified template cross sections in W H production , 2019, Journal of High Energy Physics.

[74]  P. Uwer,et al.  Matrix element method at NLO for (anti-) kt -jet algorithms , 2019, Physical Review D.

[75]  Pablo de Castro,et al.  INFERNO: Inference-Aware Neural Optimisation , 2018, Comput. Phys. Commun..

[76]  Gilles Louppe,et al.  Identifying hadronically-decaying vector bosons and top quarks in ATLAS , 2019, Journal of Physics: Conference Series.

[77]  Gilles Louppe,et al.  Mining for Dark Matter Substructure: Inferring Subhalo Population Properties from Strong Lenses with Machine Learning , 2019, The Astrophysical Journal.

[78]  Prabhat,et al.  Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model , 2018, NeurIPS.

[79]  Iain Murray,et al.  Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows , 2018, AISTATS.

[80]  L. Gouskos,et al.  The Machine Learning landscape of top taggers , 2019, SciPost Physics.

[81]  Prabhat,et al.  Etalumis: bringing probabilistic programming to scientific simulators at scale , 2019, SC.

[82]  B. Nachman,et al.  Simulation assisted likelihood-free anomaly detection , 2020, Physical Review D.

[83]  Patrick T. Komiske,et al.  OmniFold: A Method to Simultaneously Unfold All Observables. , 2019, Physical review letters.

[84]  B. Nachman,et al.  Neural networks for full phase-space reweighting and parameter tuning , 2019, Physical Review D.

[85]  Iain Murray,et al.  On Contrastive Learning for Likelihood-free Inference , 2020, ICML.

[86]  Gilles Louppe,et al.  Likelihood-free MCMC with Amortized Approximate Ratio Estimators , 2019, ICML.

[87]  Ullrich Kothe,et al.  Invertible networks or partons to detector and back again , 2020, 2006.06685.

[88]  B. Nachman,et al.  Anomaly detection with density estimation , 2020, Physical Review D.

[89]  David S. Greenberg,et al.  SBI - A toolkit for simulation-based inference , 2020, J. Open Source Softw..

[90]  Gilles Louppe,et al.  The frontier of simulation-based inference , 2019, Proceedings of the National Academy of Sciences.

[91]  A. Wulzer,et al.  Parametrized classifiers for optimal EFT sensitivity , 2020, Journal of High Energy Physics.

[92]  Gilles Louppe,et al.  Mining gold from implicit models to improve likelihood-free inference , 2018, Proceedings of the National Academy of Sciences.

[93]  K. Cranmer,et al.  MadMiner: Machine Learning-Based Inference for Particle Physics , 2019, Computing and Software for Big Science.

[94]  D. Whiteson,et al.  Resonance Searches with Machine Learned Likelihood Ratios , 2020, 2002.04699.

[95]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..

[96]  Jukka Corander,et al.  Likelihood-Free Inference by Ratio Estimation , 2016, Bayesian Analysis.