Quarter-mm2 High Dynamic Range Silicon Capacitive Accelerometer With a 3D Process

A new 3D process is proposed for inertial MEMS sensors where a thin transduction layer based on high-density surface-varying comb fingers, with nano-metric gaps, is patterned below a thick seismic mass layer. The objective is to achieve high-performance in a reduced footprint. An in-plane accelerometer is designed, fabricated with this new 3D process, and tested under acceleration. Initial fabricated devices demonstrate a full-scale range of ±160 g, <inline-formula> <tex-math notation="LaTeX">$7~\mu {g}/ \sqrt {\textit {Hz}}$ </tex-math></inline-formula> Brownian noise floor and more than 4 kHz bandwidth. These figures translate into a dynamic range of more than 150 dB (normalized to 1-Hz bandwidth) with an overall footprint of only <inline-formula> <tex-math notation="LaTeX">${400}\times {600}\,\,\mu {m}^{{2}}$ </tex-math></inline-formula>.

[1]  H. Leuthold,et al.  An ASIC for high-resolution capacitive microaccelerometers , 1990 .

[2]  Eric A. Vittoz,et al.  Micropower Techniques , 1994 .

[3]  Byung Man Kwak,et al.  Slide film damping in laterally driven microstructures , 1994 .

[4]  B. Boser,et al.  Surface micromachined accelerometers , 1995, Proceedings of the IEEE 1995 Custom Integrated Circuits Conference.

[5]  G. Fedder,et al.  A Low-Noise Low-Offset Capacitive Sensing Amplifier for a 50-g = Hz Monolithic CMOS MEMS Accelerometer , 2004 .

[6]  G.K. Fedder,et al.  A low-noise low-offset capacitive sensing amplifier for a 50-/spl mu/g//spl radic/Hz monolithic CMOS MEMS accelerometer , 2004, IEEE Journal of Solid-State Circuits.

[7]  K. Najafi,et al.  An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry , 2004 .

[8]  K. Najafi,et al.  A monolithic three-axis micro-g micromachined silicon capacitive accelerometer , 2005, Journal of Microelectromechanical Systems.

[9]  Frank L. Lewis,et al.  Open-loop versus closed-loop control of MEMS devices: choices and issues , 2005 .

[10]  Mikko Saukoski,et al.  A micropower differential charge-balancing switched-capacitor front-end for capacitive microaccelerometers , 2005, Proceedings of the 2005 European Conference on Circuit Theory and Design, 2005..

[11]  L. Richard Carley,et al.  Electromechanical /spl Delta//spl Sigma/ modulation with high-Q micromechanical accelerometers and pulse density modulated force feedback , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  Minhang Bao,et al.  Squeeze film air damping in MEMS , 2007 .

[13]  F. Ayazi,et al.  Sub-Micro-Gravity In-Plane Accelerometers With Reduced Capacitive Gaps and Extra Seismic Mass , 2007, Journal of Microelectromechanical Systems.

[14]  Slava Krylov,et al.  Toward Sensitivity Enhancement of MEMS Accelerometers Using Mechanical Amplification Mechanism , 2010, IEEE Sensors Journal.

[15]  Ernesto Lasalandra,et al.  Readout of MEMS capacitive sensors beyond the condition of pull-in instability , 2011 .

[16]  J. Wu,et al.  Hewlett packard's seismic grade MEMS accelerometer , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[17]  F. Ayazi,et al.  Wafer-level vacuum-packaged triaxial accelerometer with nano airgaps , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[18]  Derek K. Shaeffer,et al.  MEMS inertial sensors: A tutorial overview , 2013, IEEE Communications Magazine.

[19]  Denis Mougenot,et al.  A high-sensitivity MEMS-based accelerometer , 2014 .

[20]  Haluk Külah,et al.  A ΣΔ micro accelerometer with 6 µg/√Hz resolution and 130 dB dynamic range , 2014 .

[21]  A. Seshia,et al.  A Seismic-Grade Resonant MEMS Accelerometer , 2014, Journal of microelectromechanical systems.

[22]  G. K. Ananthasuresh,et al.  Improving the Sensitivity and Bandwidth of In-Plane Capacitive Microaccelerometers Using Compliant Mechanical Amplifiers , 2014, Journal of Microelectromechanical Systems.

[23]  Andrea L. Lacaita,et al.  A Sub-400-nT/ $\sqrt {\text {Hz}}$ , 775- $\mu \text{W}$ , Multi-Loop MEMS Magnetometer With Integrated Readout Electronics , 2015, Journal of Microelectromechanical Systems.

[24]  Giacomo Langfelder,et al.  In-Plane and Out-of-Plane MEMS Gyroscopes Based on Piezoresistive NEMS Detection , 2015, Journal of Microelectromechanical Systems.

[25]  Sheng-Shian Li,et al.  A ring-down technique implemented in CMOS-MEMS resonator circuits for wide-range pressure sensing applications , 2016, 2016 IEEE International Frequency Control Symposium (IFCS).

[26]  B. Bahreyni,et al.  Wideband, low-noise accelerometer with open loop dynamic range of better than 135DB , 2017, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[27]  Yan Su,et al.  A 0.23- $\mu \text{g}$ Bias Instability and 1- $\mu \text{g}/\surd $ Hz Acceleration Noise Density Silicon Oscillating Accelerometer With Embedded Frequency-to-Digital Converter in PLL , 2017, IEEE Journal of Solid-State Circuits.

[28]  R.J. Wiegerink,et al.  Nano-G accelerometer using geometric anti-springs , 2017, 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS).

[29]  A. Berthelot,et al.  Small footprint, high-performance silicon capacitive accelerometer with a 3-D process , 2018, 2018 IEEE Micro Electro Mechanical Systems (MEMS).

[30]  G. Langfelder,et al.  Combined electronics and algorithm development for offset drift characterization in MEMS accelerometers , 2018, 2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL).

[31]  Giacomo Langfelder,et al.  Solving FSR Versus Offset-Drift Trade-Offs With Three-Axis Time-Switched FM MEMS Accelerometer , 2018, Journal of Microelectromechanical Systems.

[32]  Yiannos Manoli,et al.  A 141- $\mu$ W High-Voltage MEMS Gyroscope Drive Interface Circuit Based on Flying Capacitors , 2019, IEEE Journal of Solid-State Circuits.