Weak gravitational lensing effects on cosmological parameters and dark energy from gamma-ray bursts

Context. Gamma-ray bursts (GRBs) are attractive objects for constraining the nature of dark energy in a way complementary to other cosmological probes, especially at high redshifts. However, the apparent magnitude of distant GRBs can be distorted by the gravitational lensing from the density fluctuations along the line of sight . Aims. We investigate the gravitational lensing effect on the cosmological parameters and dark energy equation of state from GRBs. Methods. We first calibrated the GRB luminosity relations without ass uming any cosmological models. The luminosity distances of low-redshift GRBs were calibrated with the cosmography method using a latest type Ia supernova (SNe Ia) sample. The luminosity distances of high-redshift GRBs were derived by assuming that the luminosity relations do not evolve with redshift. Then we investigated the non-Gaussian nature of the magnification probability distribution funct ions and the magnification bias of the gravitational lensing . Results. We find that the gravitational lensing has non-negligible e ffects on the determination of cosmological parameters and dark energy. The gravitational lensing shifts the best-fit constraints o n cosmological parameters and dark energy. Because high-redshift GRBs are more

[1]  S. Capozziello,et al.  An updated Gamma Ray Bursts Hubble diagram , 2009, 0901.3194.

[2]  Z. Dai,et al.  Constraining the Cosmological Parameters and Transition Redshift with Gamma-Ray Bursts and Supernovae , 2005, astro-ph/0512279.

[3]  Z. Dai,et al.  Measuring Dark Energy with Gamma-Ray Bursts and Other Cosmological Probes , 2007, 0706.0938.

[4]  Anthony H. Gonzalez,et al.  Malmquist Bias and the Distance to the Virgo Cluster , 1997, astro-ph/9704192.

[5]  Safety in Numbers: Gravitational Lensing Degradation of the Luminosity Distance-Redshift Relation , 2004, astro-ph/0412173.

[6]  L. Samushia,et al.  CONSTRAINING DARK ENERGY WITH GAMMA-RAY BURSTS , 2009, 0905.3836.

[7]  William H. Press,et al.  The Cosmological constant , 1992 .

[8]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[9]  Volker Bromm,et al.  High-redshift gamma-ray bursts from population III progenitors , 2006 .

[10]  C. Guidorzi,et al.  Measuring the cosmological parameters with the Ep,i–Eiso correlation of gamma-ray bursts , 2008, 0805.0377.

[11]  Scott T. Sullivan,et al.  Narrowing constraints with type Ia supernovae: converging on a cosmological constant , 2007, 0706.3730.

[12]  E. L. Wright Constraints on Dark Energy from Supernovae, Gamma-Ray Bursts, Acoustic Oscillations, Nucleosynthesis, Large-Scale Structure, and the Hubble Constant , 2007, astro-ph/0701584.

[13]  Cosmographic applications of Gamma Ray Bursts , 2010, 1011.1151.

[14]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[15]  S. Capozziello,et al.  Cosmography by GRBs , 2008, 0806.1120.

[16]  D. Holz,et al.  A Universal Probability Distribution Function for Weak-lensing Amplification , 2002, astro-ph/0204169.

[17]  E. Barrelet,et al.  Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy , 2004, astro-ph/0405232.

[18]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[19]  S. J. Dodds,et al.  Non-linear evolution of cosmological power spectra , 1996 .

[20]  Bradley E. Schaefer,et al.  The Hubble Diagram to Redshift >6 from 69 Gamma-Ray Bursts , 2006, astro-ph/0612285.

[21]  Matt Visser Jerk, snap, and the cosmological equation of state , 2003 .

[22]  He Gao,et al.  Calibration of GRB Luminosity Relations with Cosmography , 2010, 1003.5755.

[23]  N. Kaiser Weak Lensing and Cosmology , 1996, astro-ph/9610120.

[24]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[25]  Raúl Rueda,et al.  Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support by P. C. Gregory. Hardcover: 486 pages. Cambridge University Press. ISBN: 052184150X, $75.00 , 2007 .

[26]  UK,et al.  Gamma-Ray Bursts: New Rulers to Measure the Universe , 2004 .

[27]  Z. Dai,et al.  Probing The Cosmographic Parameters To Distinguish Between Dark Energy And Modified Gravity Models , 2009, 0912.5141.

[28]  S. Capozziello,et al.  Extending the Hubble diagram by gamma ray bursts , 2009, 0910.1678.

[29]  S. Capozziello,et al.  A cosmographic calibration of the Ep,i – Eiso (Amati) relation for GRBs , 2010 .

[30]  Bing Zhang,et al.  Calibration of gamma‐ray burst luminosity indicators , 2006 .

[31]  Z. Dai,et al.  The updated luminosity correlations of gamma-ray bursts and cosmological implications , 2011, 1105.0046.

[32]  Stefano Casertano,et al.  A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.

[33]  Can gamma-ray bursts constrain quintessence? , 2005, astro-ph/0504591.

[34]  Bing Zhang,et al.  MODEL-INDEPENDENT MULTIVARIABLE GAMMA-RAY BURST LUMINOSITY INDICATOR AND ITS POSSIBLE COSMOLOGICAL IMPLICATIONS , 2005 .

[35]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[36]  Yun Wang Observational signatures of the weak lensing magnification of supernovae , 2004, astro-ph/0406635.

[37]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[38]  S. Capozziello,et al.  Cosmography by Gamma Ray Bursts , 2008 .

[39]  T. Sakamoto,et al.  A PHOTOMETRIC REDSHIFT OF z ∼ 9.4 FOR GRB 090429B , 2011, 1105.4915.

[40]  A. Loeb,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE EXPECTED REDSHIFT DISTRIBUTION OF GAMMA-RAY BURSTS , 2002 .

[41]  Yuan Liu,et al.  A Cosmology-Independent Calibration of Gamma-Ray Burst Luminosity Relations and the Hubble Diagram , 2008, 0802.4262.

[42]  J. Bloom,et al.  Toward a More Standardized Candle Using Gamma-Ray Burst Energetics and Spectra , 2004, astro-ph/0408413.

[43]  Yun Wang Model-independent distance measurements from gamma-ray bursts and constraints on dark energy , 2008, 0809.0657.

[44]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support , 2005 .

[45]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[46]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[47]  Shuang-Nan Zhang,et al.  Constraints on cosmological models and reconstructing the acceleration history of the Universe with gamma-ray burst distance indicators , 2009, 0911.5644.

[48]  T. Lu,et al.  Constraining the evolution of dark energy with type Ia supernovae and gamma-ray bursts , 2008, 0803.4304.

[49]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[50]  Scott Dodelson,et al.  Learning from the Scatter in Type Ia Supernovae , 2006 .

[51]  T. Lu,et al.  Deviation from the cosmological constant or systematic errors , 2009, 0904.2832.

[52]  Gamma-ray burst contributions to constraining the evolution of dark energy , 2008, 0807.4594.