Domain Dynamics During Ferroelectric Switching

The role of defects and interfaces on switching in ferroelectric materials is observed with high-resolution microscopy. The utility of ferroelectric materials stems from the ability to nucleate and move polarized domains using an electric field. To understand the mechanisms of polarization switching, structural characterization at the nanoscale is required. We used aberration-corrected transmission electron microscopy to follow the kinetics and dynamics of ferroelectric switching at millisecond temporal and subangstrom spatial resolution in an epitaxial bilayer of an antiferromagnetic ferroelectric (BiFeO3) on a ferromagnetic electrode (La0.7Sr0.3MnO3). We observed localized nucleation events at the electrode interface, domain wall pinning on point defects, and the formation of ferroelectric domains localized to the ferroelectric and ferromagnetic interface. These results show how defects and interfaces impede full ferroelectric switching of a thin film.

[1]  W. J. Merz,et al.  Domain Formation and Domain Wall Motions in Ferroelectric BaTiO 3 Single Crystals , 1954 .

[2]  M D Rossell,et al.  Reversible electric control of exchange bias in a multiferroic field-effect device. , 2010, Nature materials.

[3]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[4]  Sergei V. Kalinin,et al.  Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. , 2008, Nature Materials.

[5]  A. Rappe,et al.  Nucleation and growth mechanism of ferroelectric domain-wall motion , 2007, Nature.

[6]  A. Tagantsev,et al.  Interface-induced phenomena in polarization response of ferroelectric thin films , 2006 .

[7]  D. Muller,et al.  Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films , 2009 .

[8]  Rainer Waser,et al.  Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. , 2007, Nature materials.

[9]  Technology,et al.  Domain wall creep in epitaxial ferroelectric Pb(Zr(0.2)Ti(0.08)O(3) thin films. , 2002, Physical review letters.

[10]  R. Ramesh,et al.  Strain control of domain-wall stability in epitaxial BiFeO3 (110) films. , 2007, Physical review letters.

[11]  Ho Won Jang,et al.  Study of defect-dipoles in an epitaxial ferroelectric thin film , 2010 .

[12]  U. Gösele,et al.  Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites , 2004, Nature materials.

[13]  Amit Kumar,et al.  Adsorption-controlled molecular-beam epitaxial growth of BiFeO3 , 2007 .

[14]  J. Robertson,et al.  Band gap and Schottky barrier heights of multiferroic BiFeO3 , 2007 .

[15]  L. Martin,et al.  Surface, bulk, and interface electronic states of epitaxial BiFeO3 films , 2009 .

[16]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[17]  F. Saibene,et al.  Frequency dependence of pulmonary quasi-static hysteresis. , 1969, Journal of applied physiology.

[18]  Albert Rose,et al.  Space-Charge-Limited Currents in Solids , 1955 .

[19]  K. Aizu Possible Species of “Ferroelastic” Crystals and of Simultaneously Ferroelectric and Ferroelastic Crystals , 1969 .

[20]  E. Müller Work Function of Tungsten Single Crystal Planes Measured by the Field Emission Microscope , 1955 .

[21]  Yi Zhang,et al.  Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. , 2011, Nano letters.

[22]  W. R. Salaneck,et al.  Electronic structure of La 0.7 Sr 0.3 MnO 3 thin films for hybrid organic'inorganic spintronics applications , 2003 .

[23]  H. Schmid,et al.  Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 , 1990 .

[24]  L. Martin,et al.  Switching kinetics in epitaxial BiFeO3 thin films , 2010 .

[25]  V. Gopalan,et al.  Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals , 1998 .

[26]  James F. Scott,et al.  Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics , 2000 .

[27]  A. Uedono,et al.  Behavior of oxygen vacancies in BiFeO3/SrRuO3/SrTiO3(100) and DyScO3(100) heterostructures , 2009 .

[28]  Sergei V. Kalinin,et al.  Direct Observation of Capacitor Switching Using Planar Electrodes , 2010 .

[29]  S. Kurimura,et al.  Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields , 1996 .

[30]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[31]  Ho Won Jang,et al.  Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. , 2010, Nature materials.

[32]  J. Ashby References and Notes , 1999 .

[33]  Sergei V. Kalinin,et al.  Polarization Control of Electron Tunneling into Ferroelectric Surfaces , 2009, Science.

[34]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[35]  T. Zhao,et al.  Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature , 2006, Nature materials.