Tripartite entanglement sudden death in Yang-Baxter systems

In this paper, we derive unitary Yang-Baxter $${\breve{R}(\theta, \varphi)}$$ matrices from the $${8\times8\,\mathbb{M}}$$ matrix and the 4 × 4 M matrix by Yang-Baxteration approach, where $${\mathbb{M}/M}$$ is the image of the braid group representation. In Yang-Baxter systems, we explore the evolution of tripartite negativity for three qubits Greenberger-Horne-Zeilinger (GHZ)-type states and W-type states and investigate the evolution of the bipartite concurrence for 2 qubits Bell-type states. We show that tripartite entanglement sudden death (ESD) and bipartite ESD all can happen in Yang-Baxter systems and find that ESD all are sensitive to the initial condition. Interestingly, we find that in the Yang-Baxter system, GHZ-type states can have bipartite entanglement and bipartite ESD, and find that in some initial conditions, W-type states have tripartite ESD while they have no bipartite Entanglement. It is worth noting that the meaningful parameter $${\varphi}$$ has great influence on bipartite ESD for two qubits Bell-type states in the Yang-Baxter system.

[1]  J. Eberly,et al.  Pairwise concurrence dynamics: a four-qubit model , 2007, quant-ph/0701111.

[2]  T. Yu,et al.  Sudden death of entanglement of two Jaynes–Cummings atoms , 2006, quant-ph/0602206.

[3]  Probabilistic quantum cloning via Greenberger-Horne-Zeilinger states , 2000, quant-ph/0001081.

[4]  M. Lewenstein,et al.  Classification of mixed three-qubit states. , 2001, Physical review letters.

[5]  Chen Jing-ling,et al.  All Pure Two-Qudit Entangled States Generated via a Universal Yang--Baxter Matrix Assisted by Local Unitary Transformations , 2009 .

[6]  R. Baxter Partition function of the eight vertex lattice model , 1972 .

[7]  G. Bjork,et al.  Entanglement invariant for the double Jaynes-Cummings model , 2007, 0706.3813.

[8]  A. Zeilinger Complementarity in neutron interferometry , 1986 .

[9]  C. Sabín,et al.  A classification of entanglement in three-qubit systems , 2007, 0707.1780.

[10]  Louis H. Kauffman,et al.  Universal Quantum Gate, Yang-Baxterization and Hamiltonian , 2004, quant-ph/0412095.

[11]  Vladimir Drinfeld,et al.  Hopf algebras and the quantum Yang-Baxter equation , 1985 .

[12]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[13]  Jennifer Franko,et al.  Extraspecial 2-groups and images of braid group representations , 2005 .

[14]  Entanglement decay versus energy change: A model , 2005, quant-ph/0503234.

[15]  D. Loss,et al.  Highly entangled ground States in tripartite qubit systems. , 2007, Physical review letters.

[16]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[17]  Gangcheng Wang,et al.  Entanglement and the Berry phase in a new Yang–Baxter system , 2009, 0903.3713.

[18]  Kang Xue,et al.  Berry phase and quantum criticality in Yang-Baxter systems , 2008, 0806.1369.

[19]  Stig Stenholm,et al.  Quantum Approach to Informatics , 2005 .

[20]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[21]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[22]  C. Yang Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction , 1967 .

[23]  T. Yu,et al.  Qubit disentanglement and decoherence via dephasing , 2003, quant-ph/0305078.

[24]  Louis H. Kauffman,et al.  Braiding operators are universal quantum gates , 2004, quant-ph/0401090.

[25]  C. Yang,et al.  S MATRIX FOR THE ONE-DIMENSIONAL N-BODY PROBLEM WITH REPULSIVE OR ATTRACTIVE delta-FUNCTION INTERACTION. , 1968 .

[26]  Taotao Hu,et al.  The sudden death of entanglement in constructed Yang–Baxter systems , 2010, Quantum Inf. Process..

[27]  K. Xue,et al.  Berry phase and entanglement of three qubits in a new Yang–Baxter system , 2009, 0904.3621.

[28]  Z. Ficek,et al.  Dark periods and revivals of entanglement in a two-qubit system , 2006 .

[29]  A. Zeilinger,et al.  Phase-shift and spin-rotation phenomena in neutron interferometry , 1976 .

[30]  Yong Zhang,et al.  GHZ States, Almost-Complex Structure and Yang–Baxter Equation , 2007, Quantum Inf. Process..

[31]  Kang Xue,et al.  Braiding transformation, entanglement swapping, and Berry phase in entanglement space , 2007, 0704.0709.

[32]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[33]  Kang Xue,et al.  Optical simulation of the Yang-Baxter equation , 2007, 0711.4703.

[34]  Goong Chen,et al.  Mathematics of Quantum Computation , 2002 .

[35]  R. Chaves,et al.  Scaling laws for the decay of multiqubit entanglement. , 2008, Physical review letters.

[36]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[37]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[38]  J. C. Retamal,et al.  Sudden birth versus sudden death of entanglement in multipartite systems. , 2008, Physical review letters.

[39]  O. Gühne,et al.  Experimental detection of entanglement via witness operators and local measurements , 2002, quant-ph/0210134.

[40]  J. Brylinski,et al.  Universal quantum gates , 2001, quant-ph/0108062.

[41]  Role of the Bell singlet state in the suppression of disentanglement , 2006, quant-ph/0607153.

[42]  Complete disentanglement by partial pure dephasing , 2005, quant-ph/0507027.

[43]  V. Drinfeld Hopf algebra and Yang-Baxter equation , 1985 .

[44]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[45]  Christoph Becher,et al.  Control and Measurement of Three-Qubit Entangled States , 2004, Science.

[46]  F. A. Bais,et al.  Quantum groups and non-Abelian braiding in quantum Hall systems , 2001 .

[47]  Generation of field mediated three qubit entangled state shared by Alice and Bob , 2008, 0807.2490.

[48]  M. Murao,et al.  Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. , 2005, Physical review letters.