Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser

Diode-pumped alkali lasers (DPALs) have undergone rapid development to become one of the most promising candidates for use as high-power laser sources in recent years. Relaxation oscillation (RO) is a common phenomenon related to the dynamic process in the time domain. Sometimes, it is applied in parameter measurement, but sometimes it should be eliminated to ensure stable output. In this paper, we develop a kinetic model to study the RO features of a DPAL, which are different from those of a conventional solid-state laser. The results reveal that the cell temperature, buffer gas pressure, pumping power, cavity length, and reflectance of an output coupler affect the characteristics of ROs. Among these parameters, the cell temperature and the pumping power exert relatively strong influences on the waiting time of the first spike in the RO. Additionally, the cavity length cannot markedly affect the peak value of the laser intensity. These new analyses should prove useful for understanding the dynamic process of DPAL oscillation and for the future design of a steady high-powered DPAL.

[1]  V. K. Kanz,et al.  End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling , 2004 .

[2]  Weihong Hua,et al.  Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser , 2011 .

[3]  Boris V. Zhdanov,et al.  Review of alkali laser research and development , 2012 .

[4]  G. Perram,et al.  A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping , 2010 .

[5]  A. Yariv,et al.  The time behavior and spectra of relaxation oscillations in a high-gain laser , 1972 .

[6]  G. Huyet,et al.  Modified relaxation oscillation parameters in optically injected semiconductor lasers , 2012 .

[7]  Syr Hui,et al.  US Patent Application , 2013 .

[8]  Boris V Zhdanov,et al.  Rubidium vapor laser pumped by two laser diode arrays. , 2008, Optics letters.

[9]  G. Perram,et al.  A pulsed, optically-pumped rubidium laser at high pump intensity , 2010 .

[10]  A. Lindberg,et al.  Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd:YVO4 laser , 2007 .

[11]  Xiaojun Xu,et al.  Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission. , 2011, Optics express.

[12]  Jason Zweiback,et al.  Modeling laser performance of scalable side pumped alkali laser , 2010, LASE.

[13]  S. M. Oak,et al.  Relaxation oscillation studies in Nd: YAG laser—Some new results , 1988 .

[14]  Pawel Szczepanski,et al.  Influence of spatial hole burning effects on relaxation oscillations in waveguide distributed feedback Nd3+:YAG lasers , 1993 .

[15]  Jason Zweiback,et al.  28W average power hydrocarbon-free rubidium diode pumped alkali laser. , 2010, Optics express.

[16]  N. Lawandy Relaxation oscillations and stability , 1982 .

[17]  Boris D. Barmashenko,et al.  Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers , 2013 .

[18]  Zundu Luo,et al.  RELAXATION OSCILLATION THEORY FOR THE ND3+:YAB SELF-FREQUENCY-DOUBLING LASER , 1994 .

[19]  Jason Zweiback,et al.  High-energy transversely pumped alkali vapor laser , 2011, LASE.

[20]  Raymond J. Beach,et al.  End-Pumped 895 nm Cs Laser , 2004 .

[21]  Hirofumi Miyajima,et al.  Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array , 2006 .

[22]  William F. Krupke,et al.  Diode pumped alkali lasers (DPALs)—A review (rev1) , 2012 .

[23]  Xiaojun Xu,et al.  Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium , 2011 .

[24]  Ralph H Page,et al.  Multimode-diode-pumped gas (alkali-vapor) laser. , 2006, Optics letters.

[25]  H. Salzmann,et al.  High repetition rate electrooptic Q-switching of Nd 3+ :YAG lasers showing strong optical birefringence , 1980 .

[26]  V Keith Kanz,et al.  Resonance transition 795-nm rubidium laser. , 2003, Optics letters.

[27]  K. Shore,et al.  Influence of detuned injection locking on the relaxation oscillation frequency of a multimode semiconductor laser , 2000 .

[28]  Wolfgang Rudolph,et al.  Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser , 2011 .

[29]  M. Martin,et al.  Spectral evolution and relaxation oscillations in dye lasers , 1986 .

[30]  G. Perram,et al.  Collisional broadening and shift of the rubidium D1 and D2 lines () by rare gases, H2, D2, N2, CH4 and CF4 , 1997 .

[31]  A. Mosk,et al.  Relaxation oscillations in long-pulsed random lasers , 2007, physics/0703045.

[32]  V. A. Eroshenko,et al.  Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation , 2012 .

[33]  K. Weingarten,et al.  In situ small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements. , 1994, Optics letters.

[34]  E. Miron,et al.  Pressure broadening of Rb D 1 and D 2 lines by 3 He, 4 He, N 2 , and Xe: Line cores and near wings , 1997 .

[35]  P.K. Cheo,et al.  Analysis of Er-doped fiber laser stability by suppressing relaxation oscillation , 1996, IEEE Photonics Technology Letters.

[36]  Hirofumi Miyajima,et al.  Approaches of output improvement for a cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array , 2007 .

[37]  B. Barmashenko,et al.  Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas. , 2012, Optics letters.

[38]  H. Taniguchi,et al.  On the relaxation oscillation in copper‐vapor lasers , 1989 .