Nanocrystal V2O5 thin film as hole-extraction layer in normal architecture organic solar cells

[1]  C. M. Li,et al.  Nanostructure effect of V2O5 buffer layer on performance of polymer-fullerene devices , 2012 .

[2]  W. Kim,et al.  A hybridized electron-selective layer using Sb-doped SnO2 nanowires for efficient inverted polymer solar cells , 2011 .

[3]  Chih‐Ping Chen,et al.  High‐Performance and Highly Durable Inverted Organic Photovoltaics Embedding Solution‐Processable Vanadium Oxides as an Interfacial Hole‐Transporting Layer , 2011, Advanced materials.

[4]  A. Kahn,et al.  Electronic structure of Vanadium pentoxide: An efficient hole injector for organic electronic materials , 2011 .

[5]  Christoph J. Brabec,et al.  High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension , 2011 .

[6]  B. Karmakar,et al.  Plasmonic Au x Ag y bimetallic alloy nanoparticles enhanced photoluminescence upconversion of Er3+ ions in antimony glass hybrid nanocomposites , 2011 .

[7]  T. Riedl,et al.  Solution Processed Vanadium Pentoxide as Charge Extraction Layer for Organic Solar Cells , 2011 .

[8]  Fu-ping Wang,et al.  Upconversion emission enhancement in Er3+/Yb3+-codoped BaTiO3 nanocrystals by tridoping with Li+ ions , 2011 .

[9]  Jing-Shun Huang,et al.  Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods , 2009 .

[10]  T. Yao,et al.  Lithium Intercalation Behavior of Cobalt Vanadium Oxide CoV3O8 Studied on the Basis of Rietveld Analysis , 2009 .

[11]  Christoph J. Brabec,et al.  Organic tandem solar cells: A review , 2009 .

[12]  Lili Wang,et al.  Enhancement of violet and ultraviolet upconversion emissions in Yb3+/Er3+-codoped YF3 nanocrystals , 2008 .

[13]  K. Müllen,et al.  Influence of molecular order on the local work function of nanographene architectures: a Kelvin-probe force microscopy study. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  D. Lincot,et al.  Electrical properties of V2O5 thin films obtained by atomic layer deposition (ALD) , 2004 .

[15]  D. Aurbach,et al.  Synthesis and Examination of Electrolytic Sodium–Vanadium Oxide Compounds Intended for Cathodes of Lithium Batteries: The Mechanism of Formation of Electrolytic Bronze β-NaxV2O5 , 2001 .

[16]  Chung‐Hsin Lu,et al.  Hydrothermal preparation of nanometer lithium nickel vanadium oxide powder at low temperature , 2000 .

[17]  D. Aurbach,et al.  Synthesis and investigation of electrolytic sodium-vanadium oxide compounds for lithium battery cathodes : Electrolytic bronze β-Na0.33V2O5 , 2000 .

[18]  E. Shembel’,et al.  Synthesis and investigation of electrolytic sodium-vanadium oxide compounds for cathodes of lithium batteries: The production of compounds with stable initial characteristics , 2000 .

[19]  J. Pereira‐Ramos,et al.  Atomic Layer Epitaxy of Vanadium Oxide Thin Films and Electrochemical Behavior in Presence of Lithium Ions , 1999 .

[20]  C. E. Tracy,et al.  Electrochemical Deposition of Vanadium Oxide in the Presence of Surfactants A Novel Approach toward High‐Rate Lithium Battery Cathodes , 1999 .

[21]  K. Byrappa,et al.  Crystal chemistry and its significance on the growth of technological materials: Part II; Octahedrally coordinated compounds , 1992 .

[22]  N. Kumagai,et al.  Electrochemical and structural characteristics of niobium vanadium oxide electrodes in a secondary lithium battery , 1988 .

[23]  M. Pasquali,et al.  Lithium/lithium vanadium oxide secondary batteries: IV. Evaluation of factors affecting the performance of test cells , 1985 .

[24]  E. Frazer,et al.  Galvanostatic cycling of vanadium oxide (V6O13) in a nonaqueous secondary lithium cell , 1983 .