Generative adversarial networks to infer velocity components in rotating turbulent flows

[1]  Luca Biferale,et al.  Data reconstruction of turbulent flows with Gappy POD, Extended POD and Generative Adversarial Networks , 2022, ArXiv.

[2]  C. Meneveau,et al.  Reconstructing turbulent velocity and pressure fields from under-resolved noisy particle tracks using physics-informed neural networks , 2022, Experiments in Fluids.

[3]  R. Vinuesa,et al.  A deep-learning approach for reconstructing 3D turbulent flows from 2D observation data , 2022, Scientific Reports.

[4]  S. Griffies,et al.  Global energy spectrum of the general oceanic circulation , 2022, Nature Communications.

[5]  Kai Fukami,et al.  Supervised convolutional network for three-dimensional fluid data reconstruction from sectional flow fields with adaptive super-resolution assistance , 2021, 2103.09020.

[6]  Hossein Azizpour,et al.  From coarse wall measurements to turbulent velocity fields through deep learning , 2021, The Physics of Fluids.

[7]  Hyojin Kim,et al.  Unsupervised deep learning for super-resolution reconstruction of turbulence , 2020, Journal of Fluid Mechanics.

[8]  S. Discetti,et al.  Convolutional-network models to predict wall-bounded turbulence from wall quantities , 2020, Journal of Fluid Mechanics.

[9]  L. Biferale,et al.  Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database , 2020, Physical Review Fluids.

[10]  L. Biferale,et al.  TURB-Rot. A large database of 3d and 2d snapshots from turbulent rotating flows , 2020, ArXiv.

[11]  Kai Fukami,et al.  Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows , 2020, Journal of Fluid Mechanics.

[12]  Mingwei Lin,et al.  Ocean Observation Technologies: A Review , 2020 .

[13]  Sravya Nimmagadda,et al.  Turbulence Enrichment using Physics-informed Generative Adversarial Networks , 2020, ArXiv.

[14]  Luca Biferale,et al.  Phase transitions and flux-loop metastable states in rotating turbulence , 2020, Physical Review Fluids.

[15]  Xi-yun Lu,et al.  Deep learning methods for super-resolution reconstruction of turbulent flows , 2020, Physics of Fluids.

[16]  M. D. Ugarte,et al.  Filling missing data and smoothing altered data in satellite imagery with a spatial functional procedure , 2019, Stochastic Environmental Research and Risk Assessment.

[17]  Luca Biferale,et al.  Cascades and transitions in turbulent flows , 2018, Physics Reports.

[18]  Chao Zeng,et al.  Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Luca Biferale,et al.  Energy transfer in turbulence under rotation. , 2017, 1711.07054.

[20]  A. Barker,et al.  Inertial Wave Turbulence Driven by Elliptical Instability. , 2017, Physical review letters.

[21]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[22]  Luca Biferale,et al.  Lagrangian statistics for Navier–Stokes turbulence under Fourier-mode reduction: fractal and homogeneous decimations , 2016, 1701.00351.

[23]  Sebastian Nowozin,et al.  f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization , 2016, NIPS.

[24]  Alexei A. Efros,et al.  Context Encoders: Feature Learning by Inpainting , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Gang Yang,et al.  Missing Information Reconstruction of Remote Sensing Data: A Technical Review , 2015, IEEE Geoscience and Remote Sensing Magazine.

[26]  Fabien S. Godeferd,et al.  Structure and Dynamics of Rotating Turbulence: A Review of Recent Experimental and Numerical Results , 2015 .

[27]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[28]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[29]  Aaron C. Courville,et al.  Generative Adversarial Nets , 2014, NIPS.

[30]  Eric Blayo,et al.  A Consistent Hybrid Variational-Smoothing Data Assimilation Method: Application to a Simple Shallow-Water Model of the Turbulent Midlatitude Ocean , 2011 .

[31]  A. Dabas Observing the atmospheric wind from space , 2010 .

[32]  Neville Smith,et al.  GODAE The Global Ocean Data Assimilation Experiment , 2009 .

[33]  H. Roman,et al.  Wavelet analysis of two-dimensional turbulence in a pure electron plasma , 2009 .

[34]  Joseph Katz,et al.  Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer , 2008 .

[35]  A. Pouquet,et al.  Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers , 2008, 0802.3714.

[36]  Bernhard Wieneke,et al.  Tomographic particle image velocimetry , 2006 .

[37]  S. Seager,et al.  Atmospheric Circulation of Close-In Extrasolar Giant Planets. I. Global, Barotropic, Adiabatic Simulations , 2006, astro-ph/0607338.

[38]  Daniele Venturi,et al.  Gappy data and reconstruction procedures for flow past a cylinder , 2004, Journal of Fluid Mechanics.

[39]  R. Gurka,et al.  XPIV–Multi-plane stereoscopic particle image velocimetry , 2004 .

[40]  Vladimir Cardos,et al.  Rotational Effects on the Boundary-Layer Flow in Wind Turbines , 2004 .

[41]  Darryl D. Holm,et al.  Resonant interactions in rotating homogeneous three-dimensional turbulence , 2003, Journal of Fluid Mechanics.

[42]  J. Borée,et al.  Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows , 2003 .

[43]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[44]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[45]  Roberto Benzi,et al.  A random process for the construction of multiaffine fields , 1993 .

[46]  Brian L. Sawford,et al.  Reynolds number effects in Lagrangian stochastic models of turbulent dispersion , 1991 .

[47]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[48]  Victor Montagud-Camps Turbulence , 2019, Turbulent Heating and Anisotropy in the Solar Wind.

[49]  Yvonne Jaeger,et al.  Turbulence: An Introduction for Scientists and Engineers , 2015 .

[50]  R. Gurka,et al.  XPIV – Multiplane stereoscopic particle image velocimetry , 2004 .

[51]  A. Prasad Particle image velocimetry , 2000 .

[52]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .