Model checking the probabilistic pi-calculus

We present an implementation of model checking for the probabilistic pi-calculus-calculus, a process algebra which supports modelling of concurrency, mobility and discrete probabilistic behaviour. Formal verification techniques for this calculus have clear applications in several domains, including mobile ad-hoc network protocols and random security protocols. Despite this, no implementation of automated verification exists. Building upon the (non-probabilistic) pi-calculus model checker MMC, we first show an automated procedure for constructing the Markov decision process representing a probabilistic pi-calculus process. This can then be verified using existing probabilistic model checkers such as PRISM. Secondly, we demonstrate how for a large class of systems a more efficient, compositional approach can be applied, which uses our extension of MMC on each parallel component of the system and then translates the results into a high-level model description for the PRISM tool. The feasibility of our techniques is demonstrated through three case studies from the pi-calculus literature.

[1]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[2]  William H. Sanders,et al.  Symbolic state-space exploration and numerical analysis of state-sharing composed models , 2004 .

[3]  Simona Orzan,et al.  Distributed Branching Bisimulation Reduction of State Spaces , 2003, Electron. Notes Theor. Comput. Sci..

[4]  E. Vicario,et al.  Close form derivation of state-density functions over DBM domains in the analysis of non-Markovian models , 2007 .

[5]  Kishor S. Trivedi,et al.  Stochastic Petri Net Models of Polling Systems , 1990, IEEE J. Sel. Areas Commun..

[6]  David Chaum,et al.  The dining cryptographers problem: Unconditional sender and recipient untraceability , 1988, Journal of Cryptology.

[7]  Gianfranco Ciardo,et al.  A data structure for the efficient Kronecker solution of GSPNs , 1999, Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331).

[8]  Salem Derisavi,et al.  A Symbolic Algorithm for Optimal Markov Chain Lumping , 2007, TACAS.

[9]  Catuscia Palamidessi,et al.  A Framework for Analyzing Probabilistic Protocols and Its Application to the Partial Secrets Exchange , 2005, TGC.

[10]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[11]  Joachim Parrow,et al.  An algebraic verification of a mobile network , 1992, Formal Aspects of Computing.

[12]  William H. Sanders,et al.  Dependability Evaluation Using Composed SAN-Based Reward Models , 1992, J. Parallel Distributed Comput..

[13]  Huimin Lin Complete inference systems for weak bisimulation equivalences in the pi-calculus , 2003, Inf. Comput..

[14]  William H. Sanders,et al.  Optimal state-space lumping in Markov chains , 2003, Inf. Process. Lett..

[15]  Vitaly Shmatikov,et al.  Analysis of probabilistic contract signing , 2006 .

[16]  Michael Goldsmith,et al.  Watchdog Transformations for Property-Oriented Model-Checking , 2003, FME.

[17]  Sagar Chaki,et al.  Types as models: model checking message-passing programs , 2002, POPL '02.

[18]  Catuscia Palamidessi,et al.  Probabilistic Anonymity , 2005, CONCUR.

[19]  Stephen Gilmore,et al.  An Efficient Algorithm for Aggregating PEPA Models , 2001, IEEE Trans. Software Eng..

[20]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[21]  Rocco De Nicola,et al.  A Symbolic Semantics for the pi-Calculus , 1996, Inf. Comput..

[22]  Faron Moller,et al.  The Mobility Workbench - A Tool for the pi-Calculus , 1994, CAV.

[23]  Catuscia Palamidessi,et al.  Symbolic Bisimulations for Probabilistic Systems , 2007 .

[24]  Gonzalo Hernández,et al.  Prediction of Abnormal Wine Fermentations Using Computational Intelligent Techniques , 2000 .

[25]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[26]  Matthew Hennessy,et al.  Symbolic Bisimulations , 1995, Theor. Comput. Sci..

[27]  Corrado Priami,et al.  Stochastic pi-Calculus , 1995, Comput. J..

[28]  Catuscia Palamidessi,et al.  Probabilistic Asynchronous pi-Calculus , 2000, FoSSaCS.

[29]  William H. Sanders,et al.  Reduced Base Model Construction Methods for Stochastic Activity Networks , 1991, IEEE J. Sel. Areas Commun..

[30]  Masahiro Fujita,et al.  Spectral Transforms for Large Boolean Functions with Applications to Technology Mapping , 1997, Formal Methods Syst. Des..

[31]  P. Buchholz Equivalence Relations for Stochastic Automata Networks , 1995 .

[32]  Oded Goldreich,et al.  A randomized protocol for signing contracts , 1985, CACM.

[33]  Andrew Hinton,et al.  PRISM: A Tool for Automatic Verification of Probabilistic Systems , 2006, TACAS.