A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes.

[1]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[2]  M. Orrit,et al.  Photoblinking of Rhodamine 6G in Poly(vinyl alcohol): Radical Dark State Formed through the Triplet , 2003 .

[3]  Jerker Widengren,et al.  Characterization of Photoinduced Isomerization and Back-Isomerization of the Cyanine Dye Cy5 by Fluorescence Correlation Spectroscopy , 2000 .

[4]  Rafael Yuste,et al.  Fluorescence microscopy today , 2005, Nature Methods.

[5]  C. Lambert,et al.  Electron Transfer Quenching of the Rose Bengal Triplet State , 1997, Photochemistry and photobiology.

[6]  Tom Vosch,et al.  Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores , 2007, Proceedings of the National Academy of Sciences.

[7]  T. Yanagida,et al.  Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. , 1990, Journal of molecular biology.

[8]  K. Schulten,et al.  Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction , 2007, Science.

[9]  Kenneth D. Weston,et al.  Direct Observation of Collective Blinking and Energy Transfer in a Bichromophoric System , 2003 .

[10]  C. Seidel,et al.  Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. , 2006, The journal of physical chemistry. A.

[11]  M. Garcia-Parajo,et al.  Power-law-distributed dark states are the main pathway for photobleaching of single organic molecules. , 2005, Physical review letters.

[12]  M. Heilemann,et al.  Carbocyanine dyes as efficient reversible single-molecule optical switch. , 2005, Journal of the American Chemical Society.

[13]  Ruchuan Liu,et al.  Single-molecule spectroscopy of interfacial electron transfer. , 2003, Journal of the American Chemical Society.

[14]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[15]  D. Lilley,et al.  Structural dynamics of individual Holliday junctions , 2003, Nature Structural Biology.

[16]  A. Chibisov Triplet states of cyanine dyes and reactions of electron transfer with their participation , 1976 .

[17]  F. Cichos,et al.  Blinking of single molecules in various environments , 2005 .

[18]  Bodo Liphardt,et al.  Laser dyes with intramolecular triplet quenching , 1981 .

[19]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[20]  Mike Heilemann,et al.  Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-based photonic wires. , 2006, Journal of the American Chemical Society.

[21]  R. Krämer,et al.  Einzelmolekülfluoreszenzspektroskopische Beobachtung der Bildung und des Zerfalls individueller Metallkomplexe , 2007 .

[22]  T. Weil,et al.  Probing intramolecular Förster resonance energy transfer in a naphthaleneimide-peryleneimide-terrylenediimide-based dendrimer by ensemble and single-molecule fluorescence spectroscopy. , 2005, Journal of the American Chemical Society.

[23]  R. Erdmann,et al.  Direct observation of delayed fluorescence from a remarkable back-isomerization in Cy5. , 2005, Journal of the American Chemical Society.

[24]  Andreas Volkmer,et al.  Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  Toby D M Bell,et al.  Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface. , 2006, The journal of physical chemistry. A.

[26]  Kenneth D. Weston,et al.  Probing Förster Type Energy Pathways in a First Generation Rigid Dendrimer Bearing Two Perylene Imide Chromophores , 2003 .

[27]  Shimon Weiss,et al.  Photobleaching pathways in single-molecule FRET experiments. , 2007, Journal of the American Chemical Society.

[28]  Michael W. Holman,et al.  Single-Molecule Spectroscopy of Intramolecular Electron Transfer in Donor-Bridge-Acceptor Systems , 2003 .

[29]  V. Korobov,et al.  Primary processes in the photochemistry of rhodamine dyes , 1978 .

[30]  Markus Sauer,et al.  Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. , 2005, Angewandte Chemie.

[31]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[32]  T. Ha,et al.  Single-molecule fluorescence resonance energy transfer. , 2001, Methods.

[33]  S. McKinney,et al.  Nonblinking and long-lasting single-molecule fluorescence imaging , 2006, Nature Methods.

[34]  D. Rehm,et al.  Kinetics of Fluorescence Quenching by Electron and H‐Atom Transfer , 1970 .

[35]  Christian Eggeling,et al.  Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. , 2007, The journal of physical chemistry. A.

[36]  X. Xie,et al.  Single-Molecule Kinetics of Interfacial Electron Transfer , 1997 .

[37]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[38]  Philip Tinnefeld,et al.  Neue Wege in der Einzelmolekül‐Fluoreszenzspektroskopie: Herausforderungen für die Chemie und Einfluss auf die Biologie , 2005 .

[39]  W. Lüttke,et al.  Laser dyes III: Concepts to increase the photostability of laser dyes☆ , 1983 .

[40]  J. Verhoeven,et al.  Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.