Wavelet bases for a set of commuting unitary operators

AbstractLet (U=U1, ...,Ud) be an orderedd-tuple of distinct, pairwise commuting, unitary operators on a complex Hilbert space ℋ, and letX:={x1, ...,xr} ⊂ ℋ such that $$U^{\mathbb{Z}^d } X: = \{ U_1^{n_1 } \ldots U_d^{n_d } x_j :(n_1 , \ldots ,n_d ) \in \mathbb{Z}^d ,j = 1, \ldots ,r\} $$ is a Riesz basis of the closed linear spanV0 of $$U^{\mathbb{Z}^d } X$$ . Suppose there is unitary operatorD on ℋ such thatV0 ⊂DV0 =:V1 andUnD=DUAn for alln ∈ ℤd, whereA is ad ×d matrix with integer entries and Δ := det(A) ≠ 0. Then there is a subset Λ inV1, withr(Δ − 1) vectors, such that $$U^{\mathbb{Z}^d } (\Gamma )$$ is a Riesz basis ofW0, the orthogonal complement ofV0 inV1. The resulting multiscale and decomposition relations can be expressed in a Fourier representation by one single equation, in terms of which the duality principle follows easily. These results are a consequence of an extension, to a set of commuting unitary operators, of Robertson's Theorems on wandering subspace for a single unitary operator [24]. Conditions are given in order that $$U^{\mathbb{Z}^d } (\Gamma )$$ is a Riesz basis ofW0. They are used in the construction of a class of linear spline wavelets on a four-direction mesh.

[1]  Zuowei Shen,et al.  Wavelets and pre-wavelets in low dimensions , 1992 .

[2]  Charles A. Micchelli Using The Refinement Equation For The Construction of Pre-Wavelets VI: Shift Invariant Subspaces , 1992 .

[3]  P. Halmos A Hilbert Space Problem Book , 1967 .

[4]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Ye.A. Gorin,et al.  Fourier analysis on groups: Rudin, W., New York and London, 1962☆ , 1963 .

[7]  C. Chui,et al.  A cardinal spline approach to wavelets , 1991 .

[8]  J. B. Robertson On wandering subspaces for unitary operators , 1965 .

[9]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[10]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[11]  Zuowei Shen,et al.  Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.

[12]  Y. Meyer,et al.  Bases d'ondelettes dans des ouverts de Rn , 1989 .

[13]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[14]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[15]  S. L. Lee,et al.  WAVELETS OF MULTIPLICITY r , 1994 .

[16]  P. G. Lemari'e,et al.  Ondelettes `a localisation exponentielle , 1988 .

[17]  I. J. Schoenberg Cardinal Spline Interpolation , 1987 .

[18]  R. DeVore,et al.  On the construction of multivariate (pre)wavelets , 1993 .

[19]  Y. Meyer Ondelettes et fonctions splines , 1987 .

[20]  N. Jacobson,et al.  Basic Algebra I , 1976 .

[21]  C. Chui,et al.  Compactly supported box-spline wavelets , 1992 .

[22]  S. L. Lee,et al.  Wavelets in wandering subspaces , 1993 .

[23]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[24]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[25]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .