miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression.

[1]  Thelma M. Escobar,et al.  STAT3 activates miR-155 in Th17 cells and acts in concert to promote experimental autoimmune uveitis. , 2013, Investigative ophthalmology & visual science.

[2]  Jay Shendure,et al.  Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. , 2012, Molecular cell.

[3]  Yuka Kanno,et al.  STATs Shape the Active Enhancer Landscape of T Cell Populations , 2012, Cell.

[4]  Richard Bonneau,et al.  A Validated Regulatory Network for Th17 Cell Specification , 2012, Cell.

[5]  B. Pugh,et al.  ChIP‐exo Method for Identifying Genomic Location of DNA‐Binding Proteins with Near‐Single‐Nucleotide Accuracy , 2012, Current protocols in molecular biology.

[6]  Iannis Aifantis,et al.  ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. , 2012, Cancer cell.

[7]  R. Jenq,et al.  Interleukin-22 Drives Endogenous Thymic Regeneration in Mice , 2012, Science.

[8]  J. O’Shea,et al.  Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. , 2012, Annual review of immunology.

[9]  G. Núñez,et al.  Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine , 2012, The Journal of experimental medicine.

[10]  S. Rutz,et al.  Transcription factor c-Maf mediates the TGF-β-dependent suppression of IL-22 production in TH17 cells , 2011, Nature Immunology.

[11]  T. Meyer,et al.  MicroRNA-155 Is Essential for the T Cell-Mediated Control of Helicobacter pylori Infection and for the Induction of Chronic Gastritis and Colitis , 2011, The Journal of Immunology.

[12]  H. Weiner,et al.  Silencing MicroRNA-155 Ameliorates Experimental Autoimmune Encephalomyelitis , 2011, The Journal of Immunology.

[13]  W. B. van den Berg,et al.  Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. , 2011, Arthritis and rheumatism.

[14]  S. Rutz,et al.  Regulation and functions of the IL-10 family of cytokines in inflammation and disease. , 2011, Annual review of immunology.

[15]  Mark H. Kaplan,et al.  A Brief History of IL-9 , 2011, The Journal of Immunology.

[16]  R. Flavell,et al.  Recent advances in IL-22 biology. , 2011, International immunology.

[17]  M. Groudine,et al.  Functional and Mechanistic Diversity of Distal Transcription Enhancers , 2011, Cell.

[18]  B. Bernstein,et al.  Mammalian Polycomb-Like Pcl2/Mtf2 Is a Novel Regulatory Component of PRC2 That Can Differentially Modulate Polycomb Activity both at the Hox Gene Cluster and at Cdkn2a Genes , 2010, Molecular and Cellular Biology.

[19]  W. Paul,et al.  Peripheral CD4+ T‐cell differentiation regulated by networks of cytokines and transcription factors , 2010, Immunological reviews.

[20]  Ryan M. O’Connell,et al.  MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. , 2010, Immunity.

[21]  Luca Mazzarella,et al.  Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators , 2010, Nature Cell Biology.

[22]  A. Sher,et al.  Redundant and Pathogenic Roles for IL-22 in Mycobacterial, Protozoan, and Helminth Infections , 2010, The Journal of Immunology.

[23]  W. Paul,et al.  Differentiation of effector CD4 T cell populations (*). , 2010, Annual review of immunology.

[24]  Juri Rappsilber,et al.  JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells , 2010, Nature.

[25]  Gang Li,et al.  Jarid2 and PRC2, partners in regulating gene expression. , 2010, Genes & development.

[26]  S. Orkin,et al.  Jumonji Modulates Polycomb Activity and Self-Renewal versus Differentiation of Stem Cells , 2009, Cell.

[27]  Arend Sidow,et al.  Jarid2/Jumonji Coordinates Control of PRC2 Enzymatic Activity and Target Gene Occupancy in Pluripotent Cells , 2009, Cell.

[28]  Wayne Tam,et al.  Reticuloendotheliosis Virus Strain T Induces miR-155, Which Targets JARID2 and Promotes Cell Survival , 2009, Journal of Virology.

[29]  K. Zhao,et al.  IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells , 2009, Proceedings of the National Academy of Sciences.

[30]  Zhihong Wu,et al.  c-Maf Regulates IL-10 Expression during Th17 Polarization1 , 2009, The Journal of Immunology.

[31]  Ryan M. O’Connell,et al.  Inositol phosphatase SHIP1 is a primary target of miR-155 , 2009, Proceedings of the National Academy of Sciences.

[32]  W. Paul,et al.  IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation , 2009, Proceedings of the National Academy of Sciences.

[33]  R. Nurieva,et al.  Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. , 2009, Immunity.

[34]  Hana Kim,et al.  AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2 , 2009, Nucleic acids research.

[35]  Hana Lee,et al.  Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. , 2009, Immunity.

[36]  Yuka Kanno,et al.  Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. , 2009, Immunity.

[37]  Anton J. Enright,et al.  Detecting microRNA binding and siRNA off-target effects from expression data , 2008, Nature Methods.

[38]  J. Buer,et al.  The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins , 2008, Nature.

[39]  W. Paul,et al.  Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome , 2008, Nature.

[40]  A. D. Panopoulos,et al.  Essential autocrine regulation by IL-21 in the generation of inflammatory T cells , 2007, Nature.

[41]  Terry B. Strom,et al.  IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells , 2007, Nature.

[42]  N. Rajewsky,et al.  Regulation of the Germinal Center Response by MicroRNA-155 , 2007, Science.

[43]  Anton J. Enright,et al.  Requirement of bic/microRNA-155 for Normal Immune Function , 2007, Science.

[44]  P. Valdez,et al.  Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis , 2007, Nature.

[45]  F. J. Livesey,et al.  A role for Dicer in immune regulation , 2006, The Journal of experimental medicine.

[46]  R. J. Hocking,et al.  TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. , 2006, Immunity.

[47]  K. Rajewsky,et al.  Aberrant T cell differentiation in the absence of Dicer , 2005, The Journal of experimental medicine.

[48]  Christoph Wülfing,et al.  Polycomb Group Protein Ezh2 Controls Actin Polymerization and Cell Signaling , 2005, Cell.

[49]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[50]  Marc Prentki,et al.  Role for Activating Transcription Factor 3 in Stress-Induced β-Cell Apoptosis , 2004, Molecular and Cellular Biology.

[51]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[52]  O. Liesenfeld Oral infection of C57BL/6 mice with Toxoplasma gondii: a new model of inflammatory bowel disease? , 2002, The Journal of infectious diseases.

[53]  W. M. Weaver,et al.  A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. , 2001, Immunity.

[54]  Reynaldo Sequerra,et al.  High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP , 2000, Nature Genetics.

[55]  E. Vigorito,et al.  Regulatory T Cells Contributes to the Development of Cutting Edge: The Foxp3 Target miR-155 , 2009 .

[56]  J. Casanova,et al.  X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy , 2001, Nature Genetics.

[57]  D. Galas,et al.  Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse , 2001, Nature Genetics.

[58]  H. Ochs,et al.  The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 , 2001, Nature Genetics.